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Abstract

Because of their_capabilities for adaptation, nonlirear function approximation, and par-
allel hardware implementation,_nearal networké have proven to be well-suited for some
imnportant control applications.

However, several impottant issués are present in many real-world neural-network control
applications that have nct vet been addressed effectively in the literature. Four of these
iraportant generic issues are identified and addressed in some depth in this_thesis as part of
the development of an adaprive neural-network-basced control systemn for an_experimental
free-flying space rohot prototype.

The first issu2 concerns the importance of true system-level design of the control system.
A now hybrid strategy is developed here, in deptly, for the beneficial intagration of neural
networks intc the totel control system. The basic philosophy is to borrow. heavily from
couventional control theory, and usé the neural network as a key subsystem just where its
nonlinear, adaptive, and parallel processing benefits autweigh the associated costs.

A second important issue in neural network control concerns incorporating a priori
knowledge into the neural network. In many applications, it is possible to get a reasonahly
accurate controller using conventional means, If this prior information is used purposefully
to pravide a starting point for the optimizing capabilities of the neural network, it can
provide much faster initial learning. In a step towards addressing this issue, a new generic
“Pully-Cornected Architecture™ (FCA) is developed for use with backprepagation. This
FCA has functionality beyond that of a layered network, and these capahilitios are. shown
10 be particularly Leneficial for control tasks. For example, they provide the new ability to
pte-program the neural.petwork directly with a linear approximate controller. .

A third issue is that-neural networks are commonly trained using a gradient-based
uptimization method sach as backpropagation: but many real-world systems have discrate.
vilued. functions. (DVLs) that do not peimit gradient-based optiniization. One example is

__the ot-off thrustots that are common on spacecraft. A new techuique is developed here that.

now exiends backpropagation learnig for use with DVI's. Moreaver, the modification to
backpropagatian is small. requiring (1) replacement of the DVFs with continuously ditfer.
entiable approximatiors. and (2) injection of noise on the forward sweep. This algorithiy
is applicable generically whenever a gradient-based optimization is used for systems with
discrete-valued functionis It is applied lieré to the contiol probleny using wn-off thrusters,




®
as well as for training neural networks built with hard-limiting neurons (signums instead of
sigimoids).

The fourth issue is that the speed of adaptation is often a limiting factor in the imple- . —
mentation of a neural-network control system. This issuc has been strongly résolved in this 9
rescarch by drawing on the above new contributions: the FCA and an automatic growing
of the netwerk combine to allow rapid adaptation in an experimental demonstration on a_

2.D laboratory model of a free-flying space robot. The neural-network controller adapts

in real time to account for multiple destabilizing thruster failures. Stability is restored PY

within 5 seconds, and near-optimal performance is achieved within 2 minutes. This perfor-

mance is obtained despite the implementation on a serial microprocessor; iraplementation

on patallel-processing hardware would provide dramatically faster performance.
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Chapter 1

Introduction

This dissertation presents generic theoretical and expérimental investigations into the use of
neural networks for control. As a significant “challenge problem,” a frec-flying space rcbot
prototype eguipped with on-off gas thrusters was controlled well, déespite major thruster
failures. by using; & new, hybrid neural-network-based reconfigurable control system. This
research was conducted at the Stanford University Avrospace Robotics Laboratory (ARL)
at, Stanford University from 1990 to 1904,

1.1 Meotivation

Due to their capabilities for adaptation, nonlineat function approximatiom, and paralle!
hardware impleméncation, neural networks Lave proven 5o be well suited for control appli-
cativ They lave been used successfully by enginests in the chemical-processing indus-
trie  .1462], steel industfy (16] {17} 17) [34), and setniconductor- processing industry {17),
aw well as @ number of resenrch applications {20 [21) [38) {61] [67). In come cases theit
learning ahilities and inhetent nonlinear nature allow them tu solve control problems and-
provide performance unimatehed by conventional methods, In other cases their distributed
nature ahd resulting computaticnal pencer allow them ta implement known solutions more
giickly and robustly than conventional setial processors.

Neural networks derive their advantage in solving very complex problens from the emer-

gent prope-ties that come with the inassive interconnéction of simple processing units. With

_ good training techniques, the nétworks are capable of implementing very complex behaviors.

For exatiiple, neural networks 1ay be used s impleinent arbittaiy mappings of inputs to
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outputs, such as from sensor signals to actuator commands in a control problem. Further,
since the mapping can be taught indirectly. neural networks are especially attractive for
poorly understaod systems - they can gencralize from training inputs and then respond by
‘nterpolatior. in untaught situations.

Due to the distributed nature of the processing and.their adaptive capability, networks
are often robust to internal component failures. Even without re-training, the distributed
processing gives the network the ability to withstand failure of several neusons without
significant inpact on the functionality. in addition to this, if on-line re-training is used, the
remaining processors can adapt to account for the failure. Rohustness is also contributed by
the network's ability to adapt to changes in the environment, plant, performarce criteria,
etc.

These features of neural networks make them particularly attractive for control appli-
cations. Several of these features will prove useful in the vontrol application presented
aere,

The central question is wlen - and how - will the incorporation of neural netwock
components provide & clear, cost-effective advantage in real-timé control?

Oune central goal of this research, then, is to study the use of neural networks for con-
trol, and to determine the chararteristics cf control applications that can benefit from the
applicaticn of neural networks. In certain cases, the merging of neural network technology
with control-ysters engineering can lead to the development of highly capable control sys.
rems. Miuich neural-nerwork theory and coatrol theary already cxists suc that significant

advancés in control capability conld be praduced simply throngh their astute infegration.

1.2  Research Issues

Nenral actworks have proven theiselves valuzble it a number of control applications. See
for exarple |20 {21] '54] (641, These are, liowever, four important issucs, that are often nost——
getinane in a real-woild control application, that have rat vet boen addressed effectively in
the nearal-votwork litefatnure:
l. For a given control need, <hould a nenral network be used?
¢ Does using a nenval network provide a clear advantage over not doing so?

e If it dacs, then to achieve that advantage optimaly, just wheie in the control

systensliould the neural network be used: and whare shauld it not?
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2. A priori knowledge is often available in the form of.models of the system’s key compo-
nents.and a preliminary control.design (e.g. provided by “conventional™ control design
techniques). I3 it possible t6 use this a priori information ta.improve greatly the per-
formance (i.e..better initial performance, final convergence to a better solution) that

the néural network can then enable?

3. Many control applications involve the use of discrete-valued devices. For example,
thrusters often aperate “on-of™ rather than witl analog-valued outputs. This presents
a problem for backpropagation learning, since these discrete-valued functions are not
continuously differentiable. Is it possible to modify backpropagation to accemmodate
the discrete-valued functions? -

4. Speed of learning is very often importaat in rcal-time control applications. It is
generally accepted that neural networks can run quickly during implementation (i.e.
once the weights have been sclected) due to the availability of parallel hardware; but
the speed of learning (i.e. finding the weight valucs) is a separate, very critical issue.
Can bachpropagation-basaed learning be made fast cuongh to be feasible for rapid
on-line adaptation?

A “challenge. problem” was formulated to focus the study of these important jssies:
a reconfigurable neural-network -Lased adaptive control system was developed and experi:
mentally demonstrated on a free-flying; space robot prototype. In addressing this chillenge
problem, the issues were studied. neural-network devielopments were made, and a wotking
reconfigurable control system was developed [69] [70) [71) [72) |73

The experimental apparatus.is shown in Figure 2.1, Specifically, the air-bearing-sup-
portad robot's position and attitude are contralled owith eight on-off gas thrusters. Tle
task was this: after the random. severe mechanical failure of a numbet of these thrusters.
identify tli: new.thfuster-system ¢haracteristics, and reconfigure the control system to regain
stability and near-optimal performance. This challenge problem is intéresting not only for
its practical applicability to space operations per s¢, dut alse - and oven niore pervasively
- as an application that raises aad focases au several important fundamental genefic iseues
i néeursl-nétwork cofitrol,

The challenge problem addresses the first issue. since it is a fairly complex, yet pealistic
contzol problem. Also, the exvellent exper’nentel perfoimance of a pic-eaisting convéational

cotitrol apptaach is aviailable for cornpe rison: this is valnable for évalnating the perfurmance
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trade-offs between neural and conventional approachés. The application also.helps to moti-
vate the second issue, a desire to make use of @ priori knowledge: an approximate solution
cani be calculated quickly before neural-network training begins. The desire to use this ¢
priori information to accelérate Jearning js especially present here due to the need for.rapid
reconfguration. The existence of on-off thrusters requires the development of a learning
method .to deal with discrete-valuned functions, highlighting the third.issue. . Finally, the
speed-of-learning issué is relevant, since stability must be regained quickly due to the limits

enforced by the experiméntal implementation (i.e. the granite table is of limited size).

1.3 Contributions

[n addressing the research issues outlined ahove, the research reported in this thesis makes
the following contributions to the fields of neural net works, automatic control, and robotics:

1. An adaptive neural-network-based theuscer contrel system for a free-flying space robot
is developed. This highly nonlinear complex control problem was solved hi a very
new way: by using a comtination of conventional aud neutal network approaches,
resulting in a “Lybrid” control system. The balance between neural and couventional
approaches will. in general, vary from one application to another. At issue is how to
determr ine the correct balance on an application-by-application basit. To address this
issue, systematic evaluation ciiteria Lave been proposed and demonstrated to aid in
the system-level design.

1)

A new “Fully-Connecred Architecture” is developed for neural network control. This

architecture is a generalization of the standard layered néural-network architecture.

The value of the extra connéctions it offers is studied. Of particnlar importance for—

conttol . this new architecture allows for dircef pre.-programming of prior-known lineat.
solutions. This benefit is uséil it the folivtic application to rehice diamatically. the
time fequired for adaptation: a linear approximate controller is quickly caleulated
and implemented hefore tralning begins. The major hurdle for successful use of this
arcliitecture, exvessive complexity, is uddréssed by the implementution of a systewatic

complexity-control method <hat manages the extia connections.

[heré are @ number of possible advantages to usirg ptior infoimation. Sinee the

network begins training with a 1easonably good solution, initial perforimanee is good.
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and 4 better solution may result due {6 the better starting point for.the nonlinear
optimization. It also serves as a bridge 10 conventional control techniques. Optimizing
the network from a starting point that is a direct emulation of a convéntional controller
may facilitate valuable understanding of what the network is doing.

3. A new algorithm was devised that now permits gradient-based optitnization of systems
with discrete-valued functions (DVFs). Gradient-based optimization of systems with
DVF's is diffienlt because the gradient of the DVF is zero everywhere, except at.the
transitions, where it is undefined. ‘The new algorithin works by forming & smooth,
continuous approximation to the DVF, and then adding noise during training. It has
heen applicd to a numher of different applications; and each time, the value of noise
injecticr is warly demonstrated. Although originally developed for application to
the cn-off ¢hruster control problem, this algorithm for gradient-based optimization
for DVFs is Lroadly applicable. Three applications are:

¢ Training a neural network coutrol system equipped with on-off actuators.
o Training neural networks built with hard-limiting neurons.

¢ Design optirnization with discrete-valued design options (propased. not yet im-
plemented).

4. An experimental demonstration was performed, where the neural-network-based con-
tol system reconfigured juself tapidly in response te multiple, major, destabilizing
thruster failures..Stability is restored within 5 seconds, and near-optial performance
is achieveéd within 2 minutés. This pérformance is.abtained despite the impléementa-
tinfLon a seridl microprocéssor ;. implementaution on parallel-pracessing hardware would.

provide dramatically faster pefformance.

The experfinental demonsiration pulls togethér each of the above contributions: #1
ledd to the officient system-devel (hybrid) design that combinag optimally the benafits
of both conventiona! control and nenral networks; #4 resulted in rapid recovery of
stability, through the direct infusion of a linear approximate contfollet; #3 allowed
the use of gradient-based optimization with this contiol problem. The ability to use
gradient inforinatior ar a'l dramatically improved the rate of adaptation {(Leyond

what non-gradienit-based metheds conld provide). These advances, combinied with an
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automatic network-growing method, increasé.the speed of the learning process to a

point where it becomes « viable alternative for on-line adaptive control.

Fach. contributior. is addressed individually and presented in Chapters 3 through 6 of
this thesis.

1.4 DBackground on Neural Networks

A brisf background on neural networks is presented here to familiarize the reader with the
biological motivation, histary, and mathematica! foundation of artificial neural networks.
More zomplefe overviews may be found in [22] [29] (67].

1.4.1 Biological Motivation

Artificial Neural Networks are named after and motivated by the biolegical neural net-
works that allow plenomenal computing performance in humans and other living organ-
isms. Despite the relatively slow computution rate of the individual human neuron, the
hiurnan brain's sound and image recognition: capabilities far exceed those of current coniput-
ers. The naturally fault tolerant and adaptive nature of the parallel distributed proccssing
model (both binlogical und artificial) make it well suited for ambignous tasks or uncertain

onvironments.

The following lists highlight the different characteristics and capabilities of computers

and thé kuman brain.

¢ Contventional Digital Computers:

- Seguential instructions

- Digiral

- Add-ess memory

- Sgaend raeasured in naroseconds
— Highly accurate

- Not-necessarily fault rolerant
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¢ Human Brain:

Massively parallel architecture

i

Analog

Asscciative Memory

Neuron response times on order of 1 millisecond

Less accurats.than computérs

Fault tolerant, naturally adaptive

Currently, conventional digital comnputers work by implementing a series of instructions,
and provide highly accurate arithmetic and logic computations in cycle times on the order
of nanoseconds.

Biological neural networks are difficult to study, and rot completely understood. What
is known is that computations are catried out in parallel, with thousands to billious (e.g. the
hvman brain has roughly 10'° processing units (nenrons) and.10!* connections (synapsas)) of
low-precition processors operating with rise tinmes on the order of milliseconds. The neurons
communicate hy sending 100 mV impulses ta other neurans, Since the magnitude of these
polses is fixed, information is encoded in the frequency of firing. By comparison, modern
microprocessors have tvpically 10% to 107 transistors, but only one o fou? computations
are executed at a time, This lack of parallelism is offset by the fast processing time on_the
order of 1-:20 nanoseconds (50 MHz to 1 GHz clock rate),

Despite the slow pracessing of cacl individual neuron, the massive parallelisin_results
in certain computing cupabilities that are impassible. with conventional sequential digital
procéssors. Some of these capabilities that are most-nearly reachable with conventional
pfocessors are: vision processing, sound processing, pattern recogaition, adaptive control,
and planning. The key idea is that designing a computerr with some attributes of the
bintoggical neural network, such as parallel computation and adaptive capability, ray yicld
gréater success in these areas than trying tu push incrementally the stare of the art in
conventional computing liasdware and algarithins,

The potential benefits of a parallel-distributed- processing approach cfeate an incentive

to cast & problem into a form that can use tho compntational capabilities of this architecture,
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1.4.2 History of Neural Networks

When people began attempting sustained heavier-thansair flight, the. first thought was to
build an. aircraft modelled. after birds. . Early ornithopters attempted to reproduce the
qappirg-wing wmotions that allow birds to fly. These designs failed. The first successful
solution, by the Wright brothers in 1903, used. instead a fixed wing to produce lift, with a
wing-warping method to contral the lift of each wing (similar to birds), but with an internal-
combustion-ongine-powered propeller for thrust. Most aircraft today resemble birds only
slightly, in that they have a wing on cach side of the fuselage, and the control system sits vp
front with the vision sensors. lowever, the propulsion system, control systom, materials,.
etc. are very different. Using nature as a motivation was useful; but it has been important
to incorporate the best engineering available, and not rigidly follow the biclogical madel.

Similarly, one of the earliest ideas for building a computer was that it should be modeled
after the human brain. Once biologists began to understand the basics about how the brain
works on a microscopic level, early neural-network researchers modelled these neurons. and
designed artificial neural networks.

However, before they understood how the brain worked, artificial computing systéms
had been built in the form of mechanical adding machines. These produced precise comnpu-
tations, one instruction at a time. As these mechanical linkages were replaced with electrical
circuits, vacuum tubes, transistors, and finally an integrated circuit consisting of many tran-
sistars, the computational performance has increased dramatically, but the highly accurate
and sorial attributes have persisted. "This development of conventional serial precessors has
contimied in parallel with the devslopment of nevrally-inspired processors.

A sequence-of major developments in neurally-inspired computing follows.

In 1943, McCullough and Pitts modelled the neuron as a simple threshold devies, and
analyzed the-computational capabilities of networks of these functions.

In 1948, Hebb proposed a way for neurons to chiange the efféct they had on other neurons,
forning the foundation for a model of learning.

In 1957, Kolmogorov's Theorem laid the mathematical foundatinn for neural networks.
This theorem proved that networks-of simple neuron-like processors are able to produce
arbitrarily comples funictions of theiy inputs [28). This existence proof is described again in
Chapter 4,

Around 1969, Rosenblatt invented the Perceptron, a sirople nenron with binary onfput.

An important featute of the Pérceptron is the simple learning rule that is guarantewl to
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converge to a solution, if one exists [43]. The functionality of the Perceptron is limited, as
discussed again in detail in Chapter 5. -

About the same time, Widrow and Hoff invented the LMS algorithm for training binary-
output neurons (18] [67]. ‘This algorithm was later applicd extensively to adaptive filtering
and control [68]. and is the foundation of the backpropagation algorithm..

In 1969, Minsky and Papert proved the limitations of the Perceptron: 1. some input.
output mappings ar¢ impossible (e.g. XOR !) with a single hidden layer, and 2. the number
of Perceptrons (neurons) required grows faster than expounentially with an increasé in prob-
lem complexity [32] [33).

In 1974, Werbos developed the backpropagation algorithin as part of his Ph.D. thesis
in Economics [6U]. Its discovery was not widely noticed until Rumelhart’s pablication in
1986_[46). The backpropagation algorithm will be described again in Chapter 5.

In 1982, Hopfield developed nétworks for associative memory.

In 1984, Hinton developed the Boltzmann Machine, a type of Hopfield Network that
uses an annealing learning process governed by Boltzimann statistics.

In 1986, Rumelhart developed the backpropagation algorithm for training networks
with multiple hidden layers (46). The hidden-layer neurons use continuously diflerentiable
sigmoid functions to permit the backpropagation of error signals used for training. This was
an important discovery, as it removed the first lirnitation of the Perceptron model. Although
Werbos is often credited with development of the backpropagation algorithm, Rumelkart
is credited with the development of it as a useful tool for néural-notwork training. The
backpropagation algorithm ¢an be traced back further to Bryson's work in the 1960s with
multistage optiniization for dynamic systems [6).

The neural network field has expanded greatly since 1986, as many researchers_have
added capabilities to the backpropagation algorithm and experimented with applications.

1.4.3 Different Types of Neural Networks

T'wn major families of neural-network types exist: memory-based and function-based. —
Function-based networks include feedforward sigmoidal networks (used in this thesis),

feedforward radial basis function networks, recurrent networks, and Adaptive lesonance

Theary (ART) networks {14]. Thess networks work by attempting to fortn a function that

Yhe EXCLUSIVE OR Iagic function, fI0.0) = 0, £(0,1) = 1,-{(1.0) =2 1, f{1,1) = 0
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“fits” the data, Or training cases they are presented. The hope is that this function formns
a genéralization of the training data, and the.netwark will perform well on new data.

Function-based noetworks such a4 backpropagation-trained feedforward sigmoidal net-
warks can be thought of as a means of data compression. For example, if 1000. bytes of
data.are used to train a network whose weights can be described with 100 bytes, the data
has been contpressed. As with all data-compression methads, this one relies on finding and
taking advantage of regularities in the data set - generalizing. If regularities do exist and are
exploited successfully. the original data set may be reproduced to a high level of accuracy.

Mcmory-based networks include the Cerebellar Model Articulation Controller (CMAC)
(2} [3], nearest-neighbor interpolation, probablistic neural networks [51] [52], and Kohonen
Learning Veetor Quantization {27). Rather than learn a generalizing function ¢f the data,
these methods store examples of the training data in memaory (for example, input-output
training patterns). When presented with a new input training pattern, nearby training
patterns are recalled from memory and the output is a function of these patterns (e.g. a
lincar interpolation among the 5 nearest neighbors). The specifics of the processing during
learning and recall vary among, the architectures listed here.

Briefly, the tradeoff is that memory-based approaches learn very quickly since they
simply remember each training input, but the recall can be much slower, since the near-
est neighbors must be found and then an interpolation performed to produce an.output.
Function-based approaches train more slowly, as they tnust compress the data into the
functional format created by the network topelogy, but have very fast recall. Also, the dis-
tinction between tliese groups is sometimes blurred, as someé systems involve a significant
amount of processing, but may bs built around stored training examples,

From a controls perspective, function-based networks fit betser with existing methods,
providing a generic¢ nonlinear control element. Function-based. nonral-network conttollers
have been. used in many applications [16] (17} [38] [47] [54] (62].[67]. However, CMAC (2] (3]
is one example of 2 memory-based neural network that has been used extensively in control
applications [23).

Pecdforward neural networks? built with sigmoidal activation functions (as described
above) were used exclusively in this research. Due to their general funstion-approximation
capabilities, it was cleat that they would work well for this application, However, anothet
reason for their wse here is that they have been used successfully for @t wide variety of

2Those rinploying no intéinal féedback.




1.5. READER’S GUIDE 11

applications,.and do appear to hold niuch premise for neural-network:contro} applications in
particular. Other neural-network architectures exist of course, with different characteristics

that may prove to offer advantages depending upon the application.

Radial-Basis-Function (RBF) networks are similar in that they have a feedforward struic- .
ture, but the activation function is different._A sigmoid forms a hyperplane (i.e. a point in
1-D space, a line in 2-D space, a plane in.3-D space, a 3-dimensional hyperplane in 4-D
space etc.) that separates the mapping space into high and low regions with a transition
region near the hyperplane. A radial basis function (typitally 2 Gaussian function) pro-
duces an activation near a certain point in space (i.e. & line segment in 1:D space, a circle
ir. 2-D space, a sphere ia 3-D space, etc.). Statistical or jterative methods may be used to
choose the ¢enters of these radial basis funeticis, and the-weightings of these basis func-
tions may be calculated directly or iteratively. These can be significant advantages over
sigmoidal networks for sorne problems tlhat happen to fit v.oll with the functionality offered
by these networks - namely one- or two-dimensional mappings. However, a major problem
with RBF networks is that largé numbers of hidden units are required for high-dimensional
irput spaces. This can be understoad by considering how the relative volume of a sphere of
irfluence of a RBF .decreases as the diraensionality of the space increases. The problems ex-
tending to high-dimensional input spaces provided a motivation to.avoid RBFs in the study
of general neuraknctwork-control issues in this rescarch. However, for a low-dimensional
_ input space (3-D for this upplication, 3-I) {ota 6-dof robot}, RBFs may be viable,

These and other different neural-network architectures have many cotmmon uspects (e.g.
the issues of overfitting or systém-level.design), and therefore, many conclnsions of the

tesearch herewill be directly applicable 1o these diffezent architectures.

1.5 Reader’s Guide

This chapter has serveit as an introduction to the research that is preésented in this disser
tation., The remuindes of this thesis is organized as fullows:

In. Chapter 2, the experinental equiptuent (i.e. the robot) that provides the “challenge
problem.” is described iu detail, and the particvlar thruster-mapping problem addressed is

presented.
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In Chapter 3, the generic issue of neural network valuc to specific control problems is

addressed. Criteria.are presented that will aid the control systems engineer in the system- .
¥ &

Jevel design of each.given control system, deciding which segments. if any, it will be heneficial
to implement with neural networks.

In Chapter 4, the new concept of “Fully-Connected Architecture” (FCA) s presented.
It is used with backpropagation, and i¢ shown tohave.greater functionality tlian a standard
layered network. Benefits of the FCA are outlined, with emphasis on its advantageous
applicability for control.

In Chapter 3, a new method i¢ presented that allows backpropagation learning with
svstems containing discrete-valuecd (and therefore not continuously differentiable) functions
tsuch as the on-off thrusters). This enabling method requires ouly simple modifications to
standard backpropagation, and extends to multiple layers of hard-limiting neurons or to
the FCA with no need for wodification.

In Chapter 6, the reconfigurable neural control system for the free-flying robot is pre-
sented. 1t draws upon each of the developments detailed above. Its good experimental
response to drastic destablizing changes in the thrusters verifies rather dramatically the
viability of eacli of the new contfibutions made.

Chapter 7 concludes this disscrtation with a summary of results and recommendations

for future research.




Chapter 2
Robot Control Application

The econtrol task addressed tn this rescarch is the control of position and asttitude of a
free-flving space robot using on-off thiusters. T'ke challenge presented here is ro (abruptly)
dzmage mechanically a number of thrusters, aad then have the control systeir. autonmously
and rapidly reconfigure itself in feal time, so as to maintain good coutrol throughout.
Moicover, some thruster failures are strongly destabilizing, which place: high demand: on
the speed of recovery, The expuerimental system is shown in Figure 2.1, and an éxample
thruster failure made is shown in Figure 2,2,

Control using on-oft thrusters is a colnplex. nonliuear pioblem that is important {or real
spacecraft [63]. ard the nonlinear and adaptive capahilities of neural networks make them
attrartive for <his applicarion,

The robot used.here has in fact previously been tuccessfully controlled without the use of
neural networks \36). Howover, the {eanventional) nuetiind relies on geometric svnunet fies in
the thru-ter lavout and does not scale well to vhiuster contioller: with higher-di.nenzionality
in the input and output spaces. A neural-network-based approximmation method does seale
well to higher-dinensional thruster controllers, and does not 1ely upon geometric syaine
tries, so it provides astrueture condueive to reconfigurable control, Additionally, the necsal
approach offers computarional flexibility, since the uetwark can be designed with tlie de-
sired speed faccuracy tradeoff. If implomerted ir pafalicd hardware, it ear be made to be.
extremdly fast.

‘this challeage problem was chosen as an aid “u Lighlighting and defising some of the rel-
evant issues i neural network control It alsu serves to facilitate di-cussion and explanation

of the peatal network control.develupizent s made in the course uf this reiearel.

13
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Figure 2.1: Stunford.Frea-Flying Spacé Rohot.
This highly antonomous inohile folior operates in the horizontal plane, using an
nir-cushion suspension to simulate the Jrag-frce and sero-g chardeteristics of 5 iee.
1t 1¢ & fully selt-confained plajiar laboratory-piototype of sir autonninous free-fly ing
space robot cumplets with on-board gas, thsusiers, efoctFical power. multy processor
comptiter syster, caumeia. wireloss Etheepet data/eommunications hink. and 'weo ®
corpieiating iianipnlators
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Nominal Configuration After Multiple Failures

ligure 2.2: Example Failure Mode

Magnitud: aud direction of each of the eight thrustets isindicated by the length and
dircetion of the hghtly shaded ttiangles. ‘Thruster failures were simulated mechani-
cally with weaker thrusters and 90" and.45° clhows. Some aof the ellbows destabilize
the robio. by changing the sign. of the thrust nr the v direction.

The field of neuriss network control is vast, so the scope of this rescarch has heen Jimired
tu the use of feedforward nenra) networks? for a spevific. application. End-to-end devel
opent of 2 neural:-netwark controller for i reals cumnplex application Lighlights the truly
hmportant issues for this applicarion. and these issues are relevant 1o other real-world ap-
plications. Where pussible, information will he proviced 1o wllow extension of these devel
opiients to other applications.

Sove.al specific a<tributes of the chalenge problem cornmon to otbier contro! application.

include:

1. The complete cantnal systenn is complox. mvolving the integration of severn] subsys
tems. Its tavel of complexity is sinilar to real-werld econteel applieations - it hae
recptitements for high-level liiman. interface, trajectaey planning, system identif ca.

tion, Jnd reconfiguiition sirategy, us well as low -level contral.

3. Practical issues such as sensor utegeation, smuple-rate snlee tion, inpnat/ontput contiol,

and processor selection, are very mueh present.

——————

PThat is. natsatke with nointecnal feodbah, such as directly fiom netvork ¢ atpits o netwark g ute
Fhose fiedlorvard petwotke wallbe wonid ge part of o fredback conteal loop
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3. Much relevant coutrol theory exists, in addition to specific control knowledige regarding

this control application.

4. leformation. about the clhanged plant. will_need to be extracted rhrough an identifica-

tion proress, so the learning task is evolving continually.

5. Rapid adaptation iz required to regair stability and prevent the system from damaging

itself,

6. On-off actuators present a noa-differentiable function that leads to problems with

curtent learning algorithme,

The complexity of the 1eseatch task generates the requirement for a basic strategy in
addressing this coutrol problenm: ‘Fhe system-level issues in items 1 throngh 1 are handled
with a hybrid approach that involves an analysis at the system level of where the neural net-
work can contribute, zegments the probfem. and makes full use of conventional control and
svstom identification methods, ‘Ta address issue number 5, a modified network architecture
is developed to provide fast initial learting, and o allow initial mfusion of a pre-calculable
»tabilizing contraller. To address issue rutber 6, a new algarithn is developed to pérforn
optimigation with the op-off thirusters. while wtill allowing the use of gradicnt information
to aecelerate the optitization.

Lhis chapter has three major sections:

. 'I'Le contro) application and experimental system (rabot) hardwate are deseribed,
2. The thimster maepping problem at the center of the cuntrol application is défined.

3. Asolution framework is presewed, inciiding three separate solution et odas for the

thrncter i apping prohlen.

2.1 Expervimental System

Tie experimental system used fu study issues in aitouomous navigation and control of
free flying space robots i shown in Figure 2.1, The design and construction of this zobot
are discussad thoreughly in 150) I that work, Uliman desig: ed and built the robot, and
pave iU the capability 1o bvercept and capture o tree-foating object autoromously. “I'he

ot v iy hardware madification requited to perform the experiments desaibed hiere was

S S i S S SRS S S e e
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the.installation of accelerometers and an angular-rate sensor, These sensors are used in the
identification of.the charactéristics of each thruster after mechanical thruster failures ocenr.
These minor hardware modifications allow the robot to sense the acceleration resulting from
cach of its thrusters, thus cnabling the reconfigurable control system that is the focus of
this application.

Operating in & horizontal.plane, the mobile robot simulates the drag-free and zeyo-g
characteristies of space: it exhibits nearly frictionless motion as it floats above a 2.7 % 3.65
meter (9 x 12 foot) granite surface plate on a 50 micron (0.002 inch) cuzhion of air. It
is a fully self-contained planar laboratory-prototype of a free-flying space robuat complete
with on-board gas supply, eight cold.gas thrusters for propulsion, electrical power, multi-
processor computer systeny, on-board camera, wireless Fthetnet data/comuunications link,
and two conperating nranipulators[h6;.

The robot haz a mass of 70 kg, and i3 controlled with eight thrusters, each nominally
producing 1 Newton of thrust. Position feedback comes ffom o pair of CCD cameras
nwuited to the ceiling above the robot,  Two cameras are fequired ta- cover the tora)
surface area of the granite table. The cameras detect a pattérn of LEDs mounted to the
top of the rohot. A custom vision proressing board processes the camera output, und
produces position infoermation at a 60 He update rare that is acrurate to better than 1 inm.
This [r. y. ] vector is digitally filtered a1d differenced to produce e velocity veetor, The
processing is performed ofl-board ard then comipunicated back to the robot via a Metorola
Altair wireleas Fihemer data/ comnmnications Lk,

The specifics of the contrel system compuients are described i groarer detail i Cliap-
ter 6. LLis section will focus on the hardware contial to the toeonSgnrable copttol < ston:

the thrusters and the aceolerometer.,

2.1.1L Thrusters

Central 1o the control syst=m design wte the actuator temselves, o< shown o Digare 203,
Eight or-off air thrusters are.used to provide redundait actuation in all three degrens of
fteedon of the base, Eack thraster produces about | N of chrest, ard can operate effectively
at rates ap to 30 Heo For thie purposes of this control application, they cat be modelled s
prre on off actatore g aoring transient effects. Huvever, the transten offec's will be shown
to impact selection of *he sample rave ard dosign of the filters genl for the accclemmetior

signale.
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Figute 2.3: Photograph of Thruster Assembly

Oue of the cight cold-gas. thruster assemblics is shown. The brass liexagonal pluz

with 6 holes is the thruster nozzle. 'The brass valve assembly is betund it, and e
the salenoid is to the right. The entite agsembly is mounted with an aluminum

Lracket. Gas used is ait at 690 kPa (100 psi) icscrvoir pressure, exiting to one

atmosphere, 1w converging-diverging nozeles are designed with an exit velocity of.

Mach 2, resultiag in one Newton of thrust per thruster I56]. Tlie soleanid valve has

a response tmie of about § ms.

e
The nominal thruster nozzles are deseribed in [36]. Lhesix converging-diverging open-
ing: in each-nozzle were machined with a customn form tool, The expansion ratio of 1.7, e
pesepvoif pressure of GO0 kP 100 peit, and axir pressure of 101 LPa (1-1.7 pei) are designed .
10 yield an exit velocity of Mach 2. ligure 2.3 shows an individual thusterassembly, ine—
chiding a solenoid valve that confrols the flow thiough the nozzle. The solennid, shown to
theright »f the salve, is spring loaded to stay closed, and opens. fully in about 5 1as when e
enrrent is applied. The viive has i chioke point of abant 1.65 mm (0.0135 inch) diameter.
One af the pairs of thruster assemblios that is located at cacli of the four corners af the
rehor is shown in Sigute 2.0 Lhe neiing layour of all eight thrusters cam be ccen in the e
lef* side of §iguir 2.2,
e
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Figure 2.4: Photograph of Two Thruster Assemblies

To study control reconfiguration, a number of “faile¢” thrusters were built to sinulate
different failure mades. These failures include: zero thrust, reduced thrust, 45° misalign-
ment, aud 907 witalignment. The hardwaiz used 1o simulate physically these failures is
shown in Figures 2.5 and :.6.

The use of a converging-diverging design resulted in a performance increase of 6.53% |36..
This may be siguificant for thrusters that are to he used every day, such as.the nominal
thrusters on this robot. However, the “failed” thrusters with-off-nominal thrusicharacteris.
tics were built with straight walls formed by diiliing with standard bits ranging in diamater
from 0.25 ram (0.010 inch) to 0.69 mm (2.027 inch). Thinstets were testod on the rodot,
measuring robot acceleration to determine the thruster strength.

It was nar possible to build thrusters with greaver thrust.capability than about 1.2
Newtons by nozzle modification done. As uiore air is required, the choke point in the valve
causes a greater pressure drop aceoss the valve, and less across the nozzle, As more openings
were added, and the toral nozzle area increased, thrust peaked at ».2 Newtens with & 1204
increase in area beyond nomiral, and then declined. Obteiniug greater thrust would require
mackining a larger valve orifice, or complete replacement of the sclenoid-valve assernbly.

Completely fuiled thrasters were sinmbated by nozzles with a sirgle .25 mm (0.019 ineh)

dinmater Lole yather thin being plneged completely, ‘FLis recatted in ahont 0.025 Nowtan of
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Figure 2.5: Thruster Failure Modes -- Reduction in Thrust Level

Thrusrer failures. are simulated by réplucing the nominal thruster nozzlér with me-

chatcally alteted riozzles. The fitst thruster. has a s$mgle 0.25 mm (0.010 nch) [ ]
diameter hulz, and simulatés a compléte thruster latlute, The-sécoind thruster has

three .65 mm (N.027 it:ch ) Holes, simulating a teduced-strength thruster. The thurd

thiruster is 2 pornal thruster. with 6 converging-divérging hobes.

|
thrast, which was 17407h of nominal, and effectively zero, Howevir, the présence of a small
linle means the thinster can be heard to fire, allowing an chsefver o hetter undorstanding
of the identifization-aud reconfigurafion process, _
e
Lhie voluine of the disniber between the valve and the nozcle opening his a transient
eftect 0 taruster parfori.ance. Wher the valve epens, il takes a flaite length of time for
the prressuie to rise to the stedady-state pressure (which is defined by the rservoir pressure -
minns the pressure losses in plumbing and across the valee), Similarly, tlifust contiaves U]
al*er tha valve closes. wlile the chamber eptios. This effest may be scen in Figuie 2,10,
e
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Figure 2.6: Thruster Failure Mades - Change_in Thrust Direction

Thruster failures are simuluted by adding elbows to chanuge physicully the direction -
of thrust. The 45° and 90" elbows simulate sévere (and potentially destabilizing)
thiuster misalignments.

Since the 45° and-90° elbows used to simulate thruster.failure increase the volume. of
this .chamber, this efféct is ificreased sigrificantly to the point that it is greater than the
sample period of 100 ms. Fortunately for the system 1D process, thrusters tend to remain
in the on position fof several sample perinds. <o the transient effects ¢art be tolepated.

2.1.2  Accelerometers, Angular-Rate Sénsor

Accurate acceleration information is crucial to rhe identification process. Acceleration data
are used te identify thruster failures and build a medel of the robot for reconfiguration.
Is: ues such as sensor noise, senser placement, sumnle-rate selection, mechanical vibration,
clectiical noise, and thrustei tranzient charaeteristics all contribure to the difficulty in ob

tainiirg « cenrate dccoleration sjenals.
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Figure 2.7: Accelerameter Phatograph
Photograph of the Systron Donsecr 43104 Linear Servo Accelerorneter. Actuad size o
is as shown: overall length is 76.2 1t (3.0 inches). Two accelerometers are moutited
to the rohat base 1o measure transfational acrelerations.
Two Systron Donner 43107 Lincar Sorvo Aceeleroineters are used. These acenlerome- °
vers, shown in Figure 2.7, have arange of 2 1 g, and ate accurate to hetter than 0.1 wmilli-g?.
The accutacy of acceleration mcasuréments is imited nat by the accelerometors, but by the
precence of extraneous vibritions. or example, the simall cooling.fan in the wireless Fth-
ernet receiver at the top of the robot produces a 70 Hz vibration that is clearly measnrable -
. . q
ad aceclerometer mounting positions on the robot base plate.
As with all Systron Donner accelerometers, the 4:410A uses a force halunce, A praof
inass is suspended within the accelerometer, and moves siightly in 12spouse 1o accelerztion,
es depicted in Figure 2.5, This displacement is measared by a positior detector, and a
o L J
L afull cot of xpicihcations is prévepted in Appendic B
e
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control circuit and torque coil are used to drive the displacement to zero. The control
current used to keep the proof mass from moving is amplified and used as the aceslorometer

output signal,

POSITION
DEFECIQH
TORGLE

TORQUE
GENCRATOR con

e () m—— e e e

HINGE
A¥§

CPTIONAL
DYNAMIC
RANGE
CIHANGE

Figure 2.8: Accelerometer Circuit

The serve-controf circuifl contained within the force-balanee accelerometer 1s shawn.
The contrad current used to keap the proaf mass from moving 1s amplified and used
as the ucccleration signal.——

A Watson Industries angular rate seisor (model # ARS(1131-1AV )is used. 1 his.device

alvo called a tuning-fork.gyro, vibrates a tuning fork and incasures the Coriolis force.cn each ..

of the bean.s as the fork rowates, thus producing the angulat rate signal. Accuracy is better
than 0.1 9/sec. but this needs to be diffetentiated to obtain angular aceeleration

The accelerometer signals and angulaz-rate sigaal pass through analog pre-fiiters with.
twa critically damped poles a1 75 Hz. They are then.sampled Sy the A/D converter at a
200 Hz satuple rate (while the control loop runs at 10 Hz). The accolerometet signals are
digitally filtered with fourth-order Buttenvorth filters with pales at 25 e, and the angular-
tate sighal is digitally Gltered with a second-order Butterworth filler with poles at 10 Hz.

Angular acceleration is obtained by w first difference of the rate signal
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At this point, the filtered accelezometer signals are cambined with the-angular-rate and
angular-acceleration signals to produce the base accelerations in [z, y, #]. The computa-
tions made to combine these signals are highly dependent upon senzor platement, so the
sensors were placed to vield the highest possible accuracy, as shown in Figure 2.9.

The accelerumeters measure acceleration in one direction at one locarion 6n the robet
base, so the basic task is to convert these acceleration signals into acceleration at the ce wter
of the base. If it were practical to Jocate both accelerometers with their proof masses
exactly coincident with the robot mass center, cne pointing straight ahead in +x, and the
other pointing in +y. no compeusation would be required. This is not prartical, so the

compensation requirements are:

1. Remove angular-acceletation effects.(needed if the accelerometar measureinent axis is

not aligned perfectly with the center of mass (¢.m.), l.e. has a tangential component).

2. Remove centrifugal-acceleration effects (:eeded if the proof masses are not located at
the ¢.m. and the measnrement axes have some radial component - e.g, these effects

occur even when the robot spins about its c.m. with no acceleration of the c.m.).

3. Rotate translational-acceleration vecror to robot frame {(needed if accelerometers are.

not aligned with x and y axes)

In theory, the accelerameters could be placed anywhere on the hase (as long as they are
not perfectly parallel). and centrifugal.and angular-acceleration effects conld be subtracted
by calenlation. However. duc to thedifferencesdn accuracy for each type of sensor, choosing
the correct configurarion will result in better acceleration measurements. Taking 1hese

factors into consideration it was found that:

1. Angular acceloration effectswould be difficult to eompensate due to a relatively. noisy
angnlar acceleration signal. For this reacon, the accelerometers are aligned accurately

with the c.m. of the robot, eliminating any angunlar aceelerition effects,

2. The angular-rate sensor (ARY) provides a clean signal, so centfifugal accoleration
offecis cin be accounted for by computation. However, the. effect is proportional
te the radial distance from the proof miss to the c... so the acceleramefers are
positioned as: close to the c.m. as pessible. The distance-is 46.5 mm (1.83 wiches),

Arn additional complication is the saturation of the ARS. Tlhis usually occurs only
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Figure 2.9: Accelerometer Mounting Locations

The accelerometers are mounted orthogonal to each other, with their seismic centers
as close to the robat center of mass as possible, and aligned radially with the center
of mass. This facilitates t5¢ removal of extraneous acceleratior signals (i.e. from
centrifugal and angular-acceleration effects) by minimizing their size and providing
good sensors for their reimoval. For examnple, the angular-rate signal is cleaner than
the angular-acceleration signal, so angular-acceleration effects arc zeroed by align-
ment with the conter of mass, while centrifugal effects are cancelled by cal:ulation.

when the rohot spins out of coutrcl, before reconfiguration, but some sensing is niceded
{(both for.centrifugal compensation and for angular-acceleration measucement), Wier,
saturztion is detected, angular rate-and acceleration are obtained by digitally filtering:
the vision-system positicn signal. The angular.rate sensor is used when possible, since
it is one derivative closer to the measurement needed,.and therefore less noisy.

3. Rotational transfermation i< accemplished with a 2 x 2 transformation matrix. S

The vesulting accelerometer meunting locations are shown in Figure 2.9, The calcula-
tions uscd to go from the sensors to the final acceleration signals are shown graphically in
Figur= 6.3.

"T'his reconstruction of the acceleration vector is carried out at a 200 Hz update rate
on-board the robot. Examples of dyvnamically corrected and filtered output from the ac-
celerometers and angular-rate sensor are shown in Figure 2.10.
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Figure 2.10: 'Translational and Angular-Acceleration Signals
Shuded arecas indicate the sign and duration of a thruster pulse. 100 nmis is the
minimuni-length pulse used for control Lag is dute to the transient response of the e
thruster and the effects of the analog and digital filtering. Acceleration perasts for
longer than the thruster pulse width Jue to the finite chamber size Letween the
valve and sozzle i the thiuster assentbly. This datu is still noisy alter filtering.
but leads to accurate identification when used with the liiear-fegression processes
described in Chapter 6.
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2.2 Thruster Mapping

2.2.1 Problem Definition

The three degrees of freedom (7, y, *) of the base are controlled using eight thrusters posi-
tioned around its perimeter, as shown in Figure 2.11. Each thruster produces both a torque
and net force on the robot. This coupling., combined with the on-off nature of the thrusters,
substantially complicates the control task.

desired force
{Fx, Fy, Tyl | Thruster

s e ——
Mapper

thruster pattern
[T1, T2, ... Ts)
e

Figure 2.11: Thruster Mapping, Problem Definition

At cvery sample period, the Thruster Mapper takes a desired force vector,
[Feiesr Fyaesr Tl and finds the thruster settings, [Ty, 12, ..., Ty, to nuni-
mize a specified cost function. The on-off thrustérs and coupling between forces
and torque rake this problem difficult. ‘Tlis rnapping is caleulated several times
per second, motivating the development of a noulinear approximete solution that
can run in real time. The thrustér mapper must adapt to changes in thruster ¢har-
acteristics. Developinient of a neural netwark to ipiplernent this “Ulieuster Mappet”
15 the focus of this application.

‘T'he thruster mapping task, also shown in Figire 2.11, that wust be performed during
each samiple period is to take an litput vector of continuons-valued desired forces and torques,
Fraers Fupay Toon)s and find the output vector of disciete-valusd (off, oir) thruster values,
(2. Cay v 1), that minimizes a specified cost function.

The robot- base-¢ontrol strategy doveloped for this systém is shown in igure 2.12. The
compléts control system is described in detail in Chupters 3 and 6. A profiottior al-derivative
¢ontrol law produces a cuitinuous vector of desiveld forces, Fpa,. based on position and
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velocity information framn the overhead vision system. The thruster mapper takes this force
vector and outputs the pattern of thrusters to be fired on the robot.

Partitioring the vontroller into a “control module” (PD controller in this case) and .2
“tkrustér.mapper” greatly sitnplifies controller design since both compsnents can be .de-
signed independently. Smooth.actuation is still possible due to-the low thruster impulse,
which results from high sample rate (10-60 Hz), low thrust (force per thruster, ¥ = 1 N:
torque per thruster, £ = 0.14 N-m) and high mass (mass. M = 70 kg: momeut of inertia,
I== 3.1 kg-m?). 'This strategy was originally developed as part of a conventional control
systemt for the robot [56].

desired desired thruster
state vector, force vector, pattern,
Xdes - Fd T
,d” PD - o Thruster |__ Robot |—
X controller | [ oo n 1| Mapper (NN) 9
— 13N ] ; —
0.4 N-m 1
ol ———
l _ 4 _[Position

Semsor

Figure 2.12: Robot-Base-Control Strategy

The zontrol midule treats the thrusters as Linear actuators. The thruster mappet
miust find the thruster paetern producing a force closest to that réyuésted by the
base cottrol module,

2.2.2 Cost Function

Since-cach thruster can output only full thrust (nominally 1 Newton) or nothing, the thruster
mapper is not capable of éxactly producing the requested force. The basic approach to this
problem is to define a cost fufiction, wid then to find. the thruster pattern, [T, oy ooy 18l
that minimizes this function. Thé spocific srarch or reural-network functional mapping used
to “find the thrustir pattern”™ will he discussed in-Chapfer 3. lin this reseurch, & genotal
cost fithction was uséd that incofporates the norinalized force gifor vector and the arnount

of gas used. ‘Lhis fusiction is shoven in Lguation 2.1,
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min J = [(Er-'zm)z + (’}":w-'—(zl)z + (Mﬂ)g - Ggas ‘Z‘, T:J (2.1)

Frocem F Ynorm Tnorm =
where,
J = thrustesanapping performance rost
T = Dbinary thruster values, [ N To Th Ty Ts Te T5 Ty
i = thruster number
Fr (T) = net force error in x-direction, (£3,,, — Fz, ). 1osulting from T
F,,.(T) = unet force error in y-direction, (£y,,, = #q. ). rosulting from T
Ten.(T) = nat torque error ghout yr-axis, (ry,,, = fva. ) vesulting from T
Fenorm = nonmalizing factor for Fy
Foorm = normalizing factor for £

Tnorm = wrmalizing factor for 7

agas = gas-weighting paraieter

In matrix form, this citn be expressed as Equation 2.2.

R ) 8
J= Far(T)T N Foxr(T) + 0400 Y T (2.2)
1=2) -
where,
Férr(‘r) = (Fr.,,(T) FVOI"(T] T".’”'('T)]T = force véctor

= 0 G
Ino:mn (2.:‘,)

N = 0 gite= 0 = norntalizing matris
Nnorm-
0 ] syl

If the robot were equippad with lineat actuators (i.e. “proportiotal thrusters"), o vecter -
of continuaus-valudd sctnal forces, [Foo., Py Teade could be produced that exactly
equalled the desired foree vector, [Fu,,, Fiy., Tvg, )y 16iested by the controller (i.e. J =2 0).
However, & perfect mappiig is not generally achievable with discrete-valued thiustérs, and
the weighting pararieters selected in the cost-function define the distsibution of érror (i.e.

tiafislational fofce ciro ve. ratational foree epfor ve. gis usage). Selection of the wonnalizing
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factors and gas-weighting factor in Equation 2.1 define the cost function and the resulting
optima!l thruster mapping.

Throughout this thesis, the normalizing factors used are the nominal force and torque
values produced by firing a single thruster, These values are indicated by Finregter, fOrce-pesr-
thruster, ind Tenrusier» torque-per-thruster. With no weighting on gas.usage, this results in
the minimum-length force-crror vector in tormalized-force space. This.is & simple, straight-
forward method that results in a good thruster mapper, and i$ used {or analysis purposes
in Chapters 4 and 5. This is shown in Equation 2.

. Ly (T))’ (5_ (" ))2 (n-,,m)"
= .é!'-_... . (1 AN . —f—'—'-— 2;4
n}ll.‘n ! [( Finruster ! Fihruster f Tthruster (24)

For the experiraental implementation, discussed in Chapter 6, an additionsl practical
issue is present: ges usage should be reduced if it can be aclhieved with niinimal effect on
force-mapping perfortnance, 1o achieve this, an additional cost is raced on gas usage,
so that if two candidate vectors produce similor size force errors, the more fuel-efficient
one will be chosen. A good balance between control accutacy and gas usage is found with
tgar = 0.5. This cost function is shown in Lquation 2.5.

u'}li'n J= [( J"”'(T,)n _{_.(IQH,(T])? + (%ﬁ%?)? + %iTi] (2.3)

Fihruster Fthruuc‘r 1=1

In minimizing the force error caly, the thruster mapper does not consider the dynantics
of the plant. It assumes that the Fg,, vector output by. the controller feedback law is
chosen carefully enough that it ieeds.only concern itself with producing the closest matching
Foq. In this application, the conteoller component i$ & sinple proportional-plud-derivative
controllef {shown in Figuré 2.12) that doés not take into account the thruster titititations.
Idezlly, the controller compunant would be awaré of theuster limitations, possibly: leading to
a merging-of thé contiol aid uiapping componcnts. This complex nunlinear ¢otrol problem
is not addressed heré. but  fifst step is proposéd in the form of 4 riwodified cost function in
Appendix A,

In summary. the cust function was ehosen 10 he the length of the normalized force-ettor
vector sugfiented by 4 cost on gas usage, wlhefe the fiofalization factors were the force.
per-th1ustér, Fisey,ger. aitd torqua-per-thruster, fipruser 108 neifal-notwork analysis only.
the cost function shown ifi Equation 2.4 was used. Var experiibental itnpleraei tution, taé

fuiictiog shown in Bagnation 2.5 was used, fedueing gas usagd, This thiuster mapper trades
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off force error for a reduction in gas usage, just as an optimal controller balances error with
control effort. .

Selection of the cost function defines the correct thruster pattern for any given Ayysired
vectar. The mechanies of how.this correct vector is actually_found (i.c. search or neural
getworksbased functional approximation) is des¢ribed below,

2.3 Solution Strategy, Mapping Methods

The reconfigusation strategy proposed in Figure 3.1 requirés an “Indirect Training" ap-
proach, where the neural network attempts to find the best mapping based on the latest
estimate of the plant model, and then adapts itself to optimize mapping performance. This
indirect training approach is shown as the top part of Figure 2.13. The word “jndirect”
here refors to the lack of an optimal teacher, so the network adaptation is directed by
experimentation (in sirawlation) with a model of the plant, As seen in Pigure 2.13, the.
network's thruster pattern is passed through a model of the rohot,.and the resultitg force
vector is compared with the desifed force vector, resulting in the orror signal used to train
the network (without the dircetion 6f an optimal teacher).

While “indirect Irarning"” is the ultimate goal here, two other methods, “direct learning”
and “exhaustive search,” are developed as steps towards of this goal. All three methods are
summarized in this section.

In the development of an indirect training procedure, several issues must be addressed,
including neural-network architecture and éptimization (also referred to as training, learn-
ing, or adaptation). To “seéparate-variables.” and permit the study of these generic issues

“"1

separately, an interpediate step, “Direct ralning,” is introduced. This step, shown in the
middle part, of Figwe 2.13, permits the developraent of neurab-network arclitecture selec-
tion and optifaization procedures which «an then be catried over directly to the indifect
téaining problem.

I direct training, the network is taught sicaple to copy an “optiral teachor.” in <his
case the optimal thruster mapping. To ubtain this optimal niajiping. a search must I
performed over all possible thiuster cunbinations. Foftunately, when all thrusters ate
working corréctly (1o Lefore the reconfiguration dne to thruster failuses), svmmetries exist
that can simplify the search process, This now-newrl-fietwor’s appioach 1s shown in the
bottom patt of Figure 214,
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INDIRECT TRAINING .
Fdes: desired force, .
l@ (Fxdes, Fydes, Tydes)
Fact: actual force,
[Fxact, Fyact, Tyact]
. T:  thruster values,
DIRECT TRAINING (T1, T2, ..., T8)

Topt: T that minimizes

Fdes ( optunal Topt erro the lcos't f}u\gtign
mappin, 1Tor: signal minimize
RIInE }ﬂ)—r to train the network
neural
network

EXHAUSIVE SEARCH (optimal solution)

_Faes symuaciry u( search, for ymmetry T (= Topt)
IrE-PIOCESH oLthum ost-process

——— e s

= optimal mapping

Figure 2.13: Thruster-Mapping Methods

Indirect training (i.e. with no.optimal teacher, adaptation is based upon perfor-
ihance with the robot model) is the ultimate goal, but direct training is used to
study architecture and optimization issues, and an exhaustive search (symmntry-
aided) is used to generate the vptimal mapping required by direct training.

Thése three different téchniques have also been used to make possible evaluation of
perforance and coniparisons. Due to the discrete nature of the thrusters, even the optimal
ihruster mapper results in significant errars, This optimal .performance level s nsed. to
eviluate the performanceé of the neural-network control systen. Also, use of the dircct
training performance as a henchinark for evaluation of the mdirect training_performance
allows study of the issues involved in indisect training.

Althongl the final goal is itdircct traiting, tlie 1ethods need to be developed in reverse
ordor, i.6. (1) optitaal seafch. ther. (2) direct training, then (3) Indirect. training. Fach sue-
cessive mathod budds upon knowledge gained in the previous step, as they wark towards
tlie final goal of indirect learning. Thefirst step contribeates the robat-base-cotittol strategy,
and at optinal solution té be used ag abonchmark. The s¢cond step contribautes under-

standing of architociare and eptimization issues, Tlie-fnalstep contiibutes it avw learning

TS s e G et e ' o | O SR U S S S P S N R SR
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algorithm to.accommodate.the on-of thrusters. The result is a learning systern that can
be used in the reconfigurable control application. Segmenting the prablern in this manner
résulted in a “separation of variables,” and allowed for concentration on one issue at a time.

These methods are presented in the order they were developed, since eachi one builds
upon the previous step; but the final method, indirect training, is.the.one used in the
reconfigurable control system required when thruster failures occur. Presenting the search
method first also serves as.a motivation for the neural-network approach, as the limited
extensibility of this method is bighlighted.

2.3.1 Thruster Mapping by Exhaustive Search

The first implementation, SEARCH, used au exhaustive search at.each sample period to
find the thruster pattern that minimizes the force-error vettar [56). Symmetries are used
to reduce greatly the search space, cnabling it to run in real time at a 60 Hz sample rate.
This solution methed does not scale well for a three-dimensional robot, or when thruster
failures are allowed, disrupting the symmetries. This providus the motivation for using a
neural network: the neural network is used to learn and implernent an approzimation to the
optimal solution - one that can be computed in real tinie,

The idea behind the exhaustive search.is that there are a finite number of possible
thruster combinations (in this case, with eight bi-level thrusters, there ars 28 = 236 com-
binations), so the thruster mapper can evaluate each possible combination, and clisose the
one that winimizes the specified cost function. This process must Le executed at every
samiple period, 50 to speed up the process it is véry helpful if the symmetries in the system
can he exploited.

Search Simplification Using Geometric Symmetries .

I£ the thrusters afe all the same stiength (the nonminal configuration assumed in this
exaritple). firing two opposing thrusters (eqs, T3 and Ty) will produce no net theust. To
climinate these useless cornbinations, the eight on-off theusters, {7y, 1%, ..., Tg), may be
considered as four backwards-off-forwards thrusters (4, iy, R3, Ri), whete, for example,
Ry reprosents the reaction fofce resulting from 13 and Ty. This reaction force representation
¢an be uséd here to teduce the possibilities to 3 = 81, Now the fobot is considered to have-
4 tii-level thrusters instéad of 8 bi-level thiustérs, This simplifieation is valid whenever two
tl.fusters of équal magnitnde are difectly opposing.
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4 - e possible force
. vector locations

Figure 2.14: Possible Force Vectors with Eight Symmetrical Thrusters
/nits are in normalized thrust units. Each of the @5 circles represents a force

vector that is achievable with the nominal configuration of eight on-off thrusters. A
simplified version of the thruster mapping problem is to find which of these circles
is closest to the desired force veetar. The problem is complicated by the additional
desires to save gas and to accornmadate for failed (hrusters,

The rext level of sirnplification comes about due to-the redundancy in actuation ca.
pahility. Elimination of redundant ¢ombinations (e.g. fiting T3 and 73 produces the exact
same net force véctor as firing T3 and Tg) reduces this numbér. to 65. Since redundant
combinations occur due to many thrusters having cominon strengths and regular positions,
this simplification fails when these conditions are not met, These G5 remaifing available
{hrust vectors are plotted in Figure 2.14.

Synmetries about the 2 = y, z - v, and y = ¢ planes allow us to consider candidates
in the first octant only, reducing the search space to 16. The final symmetiy is about the
# = y plane. This further reduces the number of candidate vectors to 11, resulting in the
11 locations shown in Figure 2,15,

The procedure to implement this svmmetry-aided search is to take the desired force
vector and usé the symraetries mentioned above to transform it into the first half of the

fitst octant in fore space ("F .., Fup,s Toue,])- This ie dofie by taking the absolute values
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Figure 2.15: Possible Force Vectors after Symmetric Transformation

With all thrusters equal strength, and a geometrically symmetric layout, the 65
candidate thrust vectors ¢an be reduced to 11 through symmetric transformation.
This simplifies the search, allowing it to run in real time (this simplification is not
possible when theuster failures occur).

of the vector components, and swapping the x and y componants if necessary. Then this
vector is compared to cach of the 11 prototypes, resultirg in 11 costs (perhaps a weighted
cost function involving gas usage and force error), one for. cach of the 11 candidates. The
candidate corxésponding to the minimum cost is selected as the optimum. The thruster
pattern associated with this candidate is thea-trausformed to undo the.symmetric transfor-
inations, bringing the forcé vector to the correct location in tlie full three-component foree
space. The resulting thruster pattern is implemnented on the robot,

Reduction of the search space from 256 candidater in the general cage to 11in the fully
symiaétric case is critical to allowing the thruster mapper (o run in real time. The smount
of cownputetion required to transform the Fy., vector into this half-octant, search aver 11
veetors, and then transformn the minimum-cost /¢ vector hack to the ofie curresponding to-the
full 3-spacc iniput, then produce the T vector, is significinitly loss tham if theso symmetrics
were igrofed and thesearch inéluded 256 pattéins,
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Difficulties in Extending This Method _

For a free-flving robot operating in three dimensions, the number of possible thruster combi-
nations increases greatly (for example, with 24 on-off thrusters, there are.2?1 = 16,777,216
¢ombinations). This is partially offset. due to the number of syinmetries also increasing
{for a fully symmetri¢c 3-1) robot with 24 thrusters, there are 469 conbinations that would

need to be searched after complete symmetric reduction -~ a significant reduction, but still

computationally demanding?).

Unfortunately, geometric symmetries may not exist, due to other spacecraft design con-
straints, or due to unanticipated thruster failures. In this ¢ase, the full number of thruster
cornbinations would need %6 be searched to obtain the optimal solution, This situation
motivates the use of a neural network for the thruster-mapping component: it is used to
implement a nonlinear approximation to the optimal solution that can be computed in real
time,

An alternative to developing & neural network to produce a function that approximates
the resul? of the aptimal search, is to use a sub-optimal search that can run in the time
constraints imposed by the application. A simple example would be to limit the passible
combinations to two thrusters firing at & time. In this case, only 24.23/2 (2 thrusters) + 24
(1 thruster) + 1 (no thrusters) = 301 combinations would need to be scarched at each sample
period. While this may make the problem tractable, mapping performance will be reduced
drastically. Other sub-optimal séarch schemes niay be devéloped that are more efficient than
this simple example. One possible scheime is presented by Sperduti and Stork in “A Rapid
Graph-based Method for Arbitrary Transformation Invariant Pattern Classification™ [53).
‘This method-was developed for an Optical Character Recognition application, highlighting
thie fact that this control application is similar to a pattern classification problem.

2.3.2 Direct Training of a Neural-Network Thruster Mapper

The scatch method describad above defines the optimal solution to the thruster mapping
problem, Thenext two methods are neural network approximations 16 this optinval solution.
Since they are apptoximations, they will he sub-optimal, but can be designed to run in real
time,

$An algorithm to automate detivation of Lhit symmettic transfortation. functions lius been déseloped by
Kurt Zimmceman and Brian Kemper at the Stanford Aeraspace Roliatics Laboratory,
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In the second method, DIRECT TRAINING, a neural network is trained to emulate
the optimal mapping produced by the exhaustive search [71]. The network is repeatedly
shown several desired force vectors.along with the.optimal thruster pattern chosen by the
search algorithm. The weights in the network are adapted using backpropagation to make
the network outputs match those produced by the search algorithm (the optimal solution).

This DIRECT TRAINING approach is useful primarily in that it allows the study of
network archites ture and topology issues before tackling the additional problems that come
with indirect learning. Hence it serves as a stepping stone to the goal of indirect learning.

The approach also has potential advantages beyond.that of an intermediate step. In
particular, using aneural network as a function emulator may increase computational speed
and system robustness very significantly due to the distributed, parallel nature of the com-

putation,

Tae investigation of the network topology issues associated with this DIRECT TRAIN-
ING approach led to the Fully Connected Architecture, presented in Section 3. The FCA
can alsc be used_with the indirect training method deseribed bielow.

2.3.3 Indirect Training of a Neural-Network Tlruster Mapper

Once the topology issues have been investigated during the direct training exercise, the
network ar.hitecture can be chosen. The topology of the network (i.e. the number of neu-
rons. and their interconnections) defines the functional complexity capacity of.the network,.
whether it is trained directly or indirectly, With the architecture already selected t.o provide
the required mapping accuracy, the next step is to focus on the-training methods.

In the third 1aethod, INRIRECT TRAINING, a.neural network is trained to find the
optimal golution when presented with a model of the plant, but no optimal teacher. This
required back-propagation of error through the discrete-valued thrusters, which in turn
motivated development of the noise injection method to be presented in Chapter 5. This
structure, shown in the top part of I'igure 2.1.3, reveals that the thruster mapper is forming
an inverse of the thruster model. Using a neural network to learn a plant inverse, and using
this inverse in the forward control loop, is a common approach for neural-network contrul.
As will be discussed later, the presence of non-differentiable hard limiters complicates the
development of this inverse.
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With this form of training made possible, the neural network control system is able
to reconfigure itself quickly in response to even drastic changes in thruster characteristics.
There is no longer a need to develop the séarch algorithm as an optimal teacher. .

When evaluating mapping performance, the search method represents a lower bound,
since it defines the optimal solution. Direct-training performance will be used as a bench-
mark for comparison with indirect training, since it represents the lower bound defined by
the finite mapping complexity available with the chosen network topology.

2.4 Summary

The control application chosen to study neural-network control is reconfigurable thruster
contral of a free-flying space robot prototype, a capability compelled by major failures
in the robot's thrusters. This chapter has described the experimental equipment used,
the thruster mapping problem that is at the center of this. control applic..tion, and the
approach taken towards solution of the thruster mapping problem (that includes the use
of three separate solution methods in building towards the final implementation). The
remainder of this thesis develops a complete solution to this coutrol problem, &nd presents
advances in neural-network iheory made to address this specific problem and the rather
broad generic range of important real-world control problems that it represents.




Chapter 3
Control System Overview

This chapter presents ar overview of the reconfigurable control system developed for the ap-
plication described in Chapter 2. This is a complex control system, involving the integration
of several components. As mentioned in Chapter 1, often the most important, and some-
times the most, difficult aspects of a neural-network contral application are the decisions
about how to structure the control system and which components are to be neural-network-
based.

Specificzlly. the first issue is to determine whether the application is one where neural
netwarks can contributc efliciently better (and cheaper) control thanis achievable without
them. If they ¢an, the second issue is (o determine the optimal system architecture, that is
to determine in just which segment(s) of the control system they should be used in order
to do just that at minimal cost. This is the essence of astute hybrid control, a central
¢ontributior of this rescarch.

In.addition to presenting the systeta-level contral system design, the reasons for cheos-—
ing this structure are given. While this particular structure does not_ropresent a gencral
architecture for developing neural-network control systems, the new methodology that led
to this-structure is general, and can be applied to the development of a wide variety of
neural-network control systems and neural uetwork applications in general.

While this chapter discusses the overall control systeni and design considerations, Chap-
tets 4 and & provide in-depth discussion of the specific neural-network issues encountered,
and Chapter 6 provides u more detailed discussion.of each of the control-systém conipanénts,

39
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3.1 Control System Structure

Figure 3.1 shows the overall system block diagram, The additions made here beyond the
control system presented in Figure 2.12 include 4 user interface and an adaptive capability.
These segments will be discussed. in detail in Chapter 6. This chapter focusses on the
system-level design considerations.

The objective is to control the position and attitude of the robot base, while subject
1o multiple, large, possibly-destabilizing changes in thruster characteristics. The plant is
linear and well-modelled, except for the actuators, which are on-off thrusters that could
liave altered characteristics. An accurate vision system provides high-bandwidth position
feedback, which is then digitally fltered and differentiated to provide velocity. On-hoard
accelerometers and an angular-rate sensot are used to provide base-acceleration mcasure-
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Fignre 3.1: Reconfigurable Control System —.Block Diagram

Tlis contrel system is based upon & conventional indirect adaptive controller, such
as a self-tuning regulator., Examples of the continuous-valued Fy.s vector and
the corresponding discrete-valued T vector are shown, The ID block repiesents
a recursive-least-squates identification of thruster strength and divection  “This
continually-updatéd inodel is passed to the neural aetwork training black, shown
in detail in Figure 5.6. The continually-updated neural thruster mappet is copied
petiodically into the aétive eontrol loop
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3.1.1 Control System Design Considerations ...

Some coutrol-system design considerations.for this application include:

1.

5,

The robut is to be controlled by a hurnan user at a kigh level, so path plan/-ning/traj/-
ect/-ory geneération is required.

The robot must reject disturbances and, at & low level, be robust to actuator and
plant-model inaccuracies; so a robust feedback systetn is required.

Gas.usage should be minimized where possible.

. High-perforimance control is desired. The requirements for a free-flying space robot

are different from those for.a sitnple satellit? control system. A robot is expected

to carry out multiple-degrec-of-freedom trajectory tracking with high control band-

width. Satellites tend to spend their timeé regulating attitude to a fixed dircction,

or slowly slewing to a new direction. Satellite thruster-control systems ire.therefore
usually designed for regulation performance and stability provability, at the expense

of trajectory-following performance. For example, a satellite control system may look .
for the largest desired sorque (roll, pitch, or yaw), and enforce a cne-dimensicnal

bang-bang control law in that degren of freedom only [63].

A non-adaptive conventional control system already exists,

Temporal issucs that influence the control design include:

4.

. Control bandwidth is below 1 Haz.

Acceptable robot-base control petfornance can be ohtained with a & Hz thruster
update rate,

. Accelerometer bandwidth extends from 0 Mz to greater than 500 He.

Extraneaus vibrations exist from 30 Hz and up.

Thiuster transient effécts are on the order of 30 Hz and up.

. During recanfigurition in response to thiuster failurés, stabilization is required within

15 seconds due to lindted table aea —
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Items. 2-3 lead to. the selection of a thruster-control update rate of 10 Hz, but.with a
sensor sample.rate.of 200 Hz. Analog prefiltering. and digital filtering are performed.on
this over-sainpled_data to produce clean acceleration signals. The time Lmit imposed by
itern 6 provides sufficient time to bogin, but not necessarily to finish building a.model of
the system. This.leads to a design that has the adaptation running concurrently with the
identification = there is not ennugh time to wait for the identification to converge.

3.1.2 Indirect Adaptive Control System

These system characteristics happen to fit well with a standard control structure known as
“indirect adaptive control.” This refers to the use of sensor information to build a model
of the system. and then to redesign & controller based upon the updated plant model. The
“inditeet” here refers to the intermediate step of building a modcl of the system. This is
the structure shown in Figure 3.1,

The user issues desired-position commands to the robot via a graphical user interface.
The current and desired position are used by a trajectory generator ta calculate the path
for the sobot to follow, resulting in a trajectory vector, Xge,, vonsisting of positions and
velucities in the three degrees of freedom at each sample time. This desired state vector
is input to a PD controller, along with the actual state vector, which is provided by the
overhead vision.-system. The Proportional-Derivativé controllér can be used due to the
simplicity of the plant.(this is.basically a 1/s? plant, so no integral control is needed (8]);
and the availability of a high-fidelity velocity sighal. Tlie PD controller output, Fy., is sent
to the.Thruster Mapper, resulting in thé thrustées pattern. T. This 7' is then iraplemented
on the robot.

This Iow-level portion of the ¢ontrol.systemn, consisting of the trajictory geeratod, D
controller, thruster mapper, and position .sciisor, is always running, and doss nat have
adaptive capability. The adaptive system is highlighted in Figure 3.1, and consists of thiee
cofiiponerts: seénsors, an identification process, and @-controller redesign process. The
accoletometers and angular-raté sensor pfoduce a base acceleration. mezsurément vector.
These signals, along with thie thrister frifig signals, are used by the identification process
1o update a modél of the fobot's thruster characteristics. This model s periodicully sent
to i contral fédesigin pracéss that generates an updated thrugeer mappec baséd wpon the
updated robot model.—This updated thruster mappor is periodically copied 1o the thruster
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mappar running in the control loop, as indicated by the double arrow. ‘The control, identi-
fication,.and .controfler-redesign loups are.all running concurrently. Due to the possibility
of a destabilizing failure, there is not enough time to wait to generate a new updated plant
mode] before redesigning the. controller,

So far, this structure makes no mention of neural networks. The factors involved in the
decision of where to usé neural networks are outlined helow, In this application, a recursive
least squares lincar regréssion I component was used, since identification of the thruster
chatactoristics is a linear provess. The algarithm used to obtain acceleration measurements
was nonlinear, but could be derived analytically, so no neural network was used there cithes.
A neural network was used for the thruster-mapping component since it is an inscrutable
nonlinéar function that requires adaptation. "The .control redesign process is therefoce a
backpropagation: based neural-nétwork training algorithm,

The neural network {8 used provisely at the locationt whaure it is beneficial: the thruster
mapper. If the robot were to remain porfectly symmeétric, with no degradation, and it was
restricted %o in-the-plane motions with 8 thrusters, the symietry-assisted scarch would
work well ciiough, and no neural network would be required at all, In this apolication, the
benefits of the neural netwotk approach are required only if the symuetries are lost and
adaptation is reqnired,

The selection. of this system architecture, and the (ollowing develupment of a nsural-
aetwark-based reconfigurable centrol system présent one specific esatple of a successful
application of ncural networks for contral. Howaver, the decisions of how to structure
thé confrol systemi, anid where end How to use the neural network are more general: The
lessons leariied during the construction of this systém may in fact beeapplied tw-any can-
didate nieural-nétwork control application. Forexample, although this application .used an
indirect adaptive contfal structute, the 1acthodology that follows is not restrictéd to this

architeécture,

3.2 Cost/Benefit Analysis

To determine where icura) networks éan contfibute elfectively, the control systenis egineer
niust consider the stréngtlis of neural networks (nonlinear,.adaptive, genefic, unistructused,
paiallslizable) as well s the costs-ascociated with these benefits (difficult to understand

watkings or prove stalijlity, desigu is itetative, computatioitally complx). Tlic ¢ost/henefit
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balunce must be evaluated on an application by application basis.. First at the system level,
the system requirements. and considerations of degree-of-nonlinearity, adaptation require--
ments, and computational complexity, etc., lead to a candidate systém atchitecture, Then
at the component level, this cost/benefit analysis is repeated, leading to the decision of
what sart of subsystem will be used.in each scgment. of the control system... .

Before evaluating the applicability of neural networks for a contral (or other) application,
it is useful 19 exaraine, in mare detail, the speeific costs and benefits of neural networks,
since these are what will be weighed in the design decision.

3.2.1 Benefits of Neural Networks

¢ Nonlinear - Since ncural natworks tend to be designed with an iterative gradient
search, they can handle nonlinear fnternal and external (e.3. system to be controlled)

coinponents just as easily as linear ones.

o General - The most common noural-tietwork architesture, the multi-layer perceptron
(feedforward network with sigmoidal activation functions) has been proven to be ca-
pable.of representing any MIMO funiction to an arbitrary degree of accuracy. This
was praseated by Hofnik et. al. i "Multilayer Feedforward networks ate universal
approximaturs” [19). This generality is impottant when néural networks are devel-.
oped in software, but also for hardware implementation, where the ability to build

pulti-purpose ICs is valuable,

¢ Unstruchised - Unlike a linear mapping or Foutier transfarin, theré is no pré-spocified
stfucture to the computation a neural netwotk can perform. The structuré 1s devel-
oped during training as the notwork pacanicters are sei, defining the suiength (o

existenzo) of connections between nentons,

¢ l'arallelizable - Neura| netwarks are designed to be implerented in. purallel hard.
ware. In most applications, they aie developed in software, and: implemented on
setinl-caripnting hardware, since thal présents a more cofiverient development ervi-
ponmeft, and most-of the effort i spent dufing the désign and development phase.
Hardwate itnplementation then has the potential for vast iniprovements in processing
thiotghput. An additiviial beietit of parallel hatdiwaie implémeitation is that the.

networs is—tchuat_to_partial processor fallnie. Foi example, it a space application,
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if cosmic rays were to destroy a few of the nearons, it is unlikely tlhat the output
would be significantly affected, since the output is detérmined by contributions from .
thousands or millions. of neurons.. Additionally, the remaining neurons would be able
to adapt to compensate for the damage,

3.2,2 Costs Associated With the Use of Neural Networks

¢ Black Box - The functionality of a neural network is .defined by the connection
strengths, i.e. a large nimber of paramcters. This, coupled with the fact that they are
nonlinear, meéans that it is difficult to understand what they do. It may Le possible to
verify the network’s performance for a sufficiently large range of conditions, leading
one to trust that the network wil' work well, dut it is not easy to undetstand why the
network dows what it does (contrary to a simple lincar cortraller,.where it iy oftett
possible to study the gains of poles and zeros <o forra an understanding of the function
of the controller, and perhaps why the automatic desigh proness chose that function).

o Stability Proofs - Due to a neural network’s nonlinearity and complicated structure,
it is virtually impossible 1o develop rigotous stability proofs for it. ‘Lhis is a big
concern for control systems that_put high demands on.stability, such as aircraft and
spacecraft, One way to address this prableni is to have a higli-performarcé neural-
netwerk control systeni with a backup low-performarnce linear controller that hes been
provea stable. If instability were ever detected, cantrol authority would be switched
to the low-riorformance sysiem.

e [terative - Function based sienral networks. such asthose.described in this thesis,
are not caledlated in on2 step. hint are developed thiough ai-iterative piocess known
as trainiitg or learning. This tiakes time,.and-sinve it is a nonlineas oplimization,
convérgence to a global ininiinuin is ot guaranteed, Fortuiately, the local ininimum i
rarély sighificantly worse than the glubal optimum. The FCA, presented in Cliapter 4,
addresses hoth of these problems: by pié-programming in a lincar solution, the ifitial
trainiag pérformance is as good as thie Uest linear solution; also, starting the Aetwork
closé to a feasonihly good solution makes it loss likely thal the optitdization will
téfminate in an wndésiriable local minithnin,

¢ Compitaticnal Complexity - The nenral network may have excess néutons of con:

nectiens, thereby offéring more fanctional complexity than is tieeded, This resulis

o ———mt—rs S~ S—
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in slower execution, and créates.a susceptibility to overfitting (poor generalization).
Fortunately, many network pruning methods are.availahle_that eliminate the excess
complexity, but this temains a.complicating issue.

The specific costs and benefits vary hetween different types of nétworks. For exawmple,
memory-based 1etworks do not have the iterative cost mentioned above, as they . just store

all sensor information and racall the relevant information when needed. Also, ¢éome neural .

networks may be better than others for a specific problem -~ for éxample, MLPs ve. RBFs,
as discussed in Chapter 1.

3.3 Criteria For Valuable Application of Neural Networks

Study of these. costs and benefits, the focussed (experimental) experience with the cobot
application, and éxamination of other successful nenral nelwork applications has led to the
following summary, It.is.a concise list of criteria for an application where use cf neural
networks will be advantageous, The application should be:

e Monlinear - I'he powerful nonfinear capability of neural networks comes at the signifi-
cant cost of computational complexity, slow convergence speed, and lack of provability.
If no advantage will be obtained from this capability, it should be avoided.

o Insceutable - The fact that neural aietworks provide a general nanlinear function-.
approximation capability niakes them particularly valuable fot- problems where-the
nonlineutity is inscrutable. i the exact form of nonlinearity is known (e.g. sin, cos,
quadratic funétions, etc.) it should be used explicitly;. however, this may not be
practical if the speed vequiremient calls for parallel hardware. For exawaple, if 10,000
sin(z? + y?) operations are needed at a 1 MUzaupdite rate, parallel hardware is re:
quired, and it may not be feasible to custom design ait Application-Specific Itegrated
Cliteuit (ASIC) for this application, where it may be feasible to train a neural nefwork

chip 1o emulate this funciion.

e (possibly) Requirinz Adaptation - Since neural networks are ganerally trained itera-
tively baséd upon som2 form of orrof feedback, thay are already set up for adaptation
to chunges i the plant o environment.Therefore adaptive capability éan be added
with miinimal effost, enbuncing theic applicebility in adaptive éontrol sitmitions.
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ar

¢ Requiring parallel hardware (processing speed) ~ The availability of parallel neural
network hardware.niay make a neural-network approximation to even a known non-
linear function (for which parallel hardware does not éxist and is not efficiently imple-
mented using a microprocessor or programmable logic device) highly advantageous.

An understanding of the alternative methods (statistics, linear adaptive contral, ctc.)
is uscful for determining whether the benefits a nenral network can offer outweigh the
costs for each application. It is common ta see examples in the literature of neural network
control systems used where a linear adaptive controller would have been easiet to implement,
and worked better. Tt is also common to see flawed justifications for neural control like
“this is a difficult control problem that has not been solved using conventional methods,
$0 we proposé to use a neural network, (simply) because neural networks can do things
conventional methods cannot.”

Once it has Leen determined that the application can benefit from the use of neural
aetworks, these same principles should be used to determine which segnients of the overall
control system are advantageously implemented with neural networks-and which are not.
(This i the essénce of the optimal hybrid system concept.)

Ir: applying these priticiplés to the robot contro! application, the conclusion is that
a neural network will be beneficial. As mentioned in the prévious soction, the task is
to.develop an approxitnation to the optimal thrustet mapping, which can be caliulated
optimally, but is too comgplicated to run in real time. This mapping is indeed both highly
nonlinear and inscrutable, and does réquire adaptation in.response to changes in the thrustes
characteristics. Lithitations. of the neura! network approach for speed of reconfiguration,
and training with the on-oft thrusters, will be addressed with extensions to neural network

theory in those areas,
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Chapter 4

Fully-Connected Architecture

A number of issues are present in the thruster mapping control application discussed in
Chapter 2 that are common to many ncural network ¢ontrol problems.

e Prior information about the system exists, and it should be possible to exploit this
inforrnation when generating the neural network.

¢ Initial learning speed is important if the neural network will be trained_on-line.

¢ The neural-network topology (the number and connectivity of neurons) required to
achieve an accuraté mapping without over-fitting is unknown beforehand.

e Some of the control outputs (thruster values) influence one another (e.g., directly
opposing thrusters should never fire together).

The most rélevant of these features for the robot control application are the first. and
second ones.. Reconfiguring in response-to a destabilizing thruster failure places a high
ptemium on speéd of adaptation. The afchitecture presented hére allows immmediate imple-
mentdtion of a linear solution that is calenlated using conventional methods. This provides
a Jow-performance, bui immediately-stable controller to use as a starting point in the epti.
mization,

I, this chapter, a general neural-network architecture that addrésses these issues is
suggested. This “FPully-Connected Architecture” is for feedforward nenral ietworks that can
be trained using backprapagation [46) [60], and refers to the structute shown in Figure 4.1,
It was first présénted by Werbos [61), and iuitially developed in a confiol fantext by Wilson
and Rock {71]




50 CHAPTER 4. FULLY-CONNECTED ARCHITECTURE
®
The extra.connectivity of this architecture, which is unavailable in a layered network,
allows seamless integration of linear & priori solutions, communication among input and
cutput neuréns, and greater overall functionality than a layered network. The increase
in parameters. can exacerbate over-fitting problems, and a systematic complexity-control L ]
method is successfully demonstrated that lessens this problem.
¢
Inputs Outputs
Layered (Y
Feed-Forward equivalent ﬂ sigmolds on outputs of
Network hidden neurons only
®
Fully-Connected -— bath FCA
Architecture and layered ®
(FCA) ...... FCA only
Inputs Outputs
P P PY

Figure 4.1: Extra. Connections Available with FCA.

This general feedforward architecture subsumes moré-famniliar single or double-

hidden-layer architectures. Here, the FCA .is shown to have- all the connections

of a single-hidden:layer network, and sone extras as well, The network's neufons

are cousidered to be ordered, beginning with the first input, énding with the last ®
output, and having hidden units in between, perhatps interspetsed armong input or

output units. Note that there is 1o longer a concept of lavers. Backpropagation ré-

stricts inforrnation flow (o one difcction only, so to get maximum interconnertions,

each neuron takesinputs frof all Jower-iumbered ncurons and sends outputs to all

higher-numbeéred nsurois.




4.1. BACKGROUND 51

4.1 Background.

In the literature, the term “fully-connected feedforward neural network” usually refers.to
a layered network, with an input layer, one or more.hidden. layers, and an output layer.
“Feedforward” indicates that signals flow from the input layer, through hidden layers, and
to the output layer in one direction only, which is required by the backpropagation algo-
rithm. “Fully-connected” indicates that every input is connected to every neuron in the
first hidden layer, and so on bietween successive layers. While this layered architecture may
be particularly well suited for.many applications and certain hardware implementations, a
more general structure may be able to take advantage of the full capabilities offered by the
backpropagation algorithm [46].

In this work, the term “fully-connected” will refer to the structure shown at the hot-
tom of Figure 4.1. Instead of layers, a fully-connected network can be considered to have
neurons that are ordered, beginning with the first input, ending with the last output, and
having hidden units in between, perhaps interspersed among input or output units (61).
Backpropagation restricts information flow to one direction only; so, again, to get maxi-
mum interconnections, each neuron takes inputs from all lower-numbered neurons and sends
outputs to all higher-numbered neurons. For example, the last output neuron takes inputs
from all the hidden neurons, just as in a layered architecture; however, it now also takes

inputs from_each of the inpur neurons and previous output neurons. .

The main. benefit is not that it rnaximizeu the connections-to-neurons ratio, but instead
that,.when combined.with a systematic weight-pruning procedure, it allows a more flexible
use of layering. There has been a recent trend in using not one but two hidden layers: the
FCA is a generalizatior of that.trend.

In the application addressed in this work, the cxtra connections are found to be useful
when coupled with a procedure to control over-fitting. In particular, the 3 x 4 matrix in the
upper right cornér of thé weight matrix shown in Figure 4.2 provides direct linear informa-
tion flow from input te outptt (sigmoids are used only for the outputs of hidden neurons),
and the 3 < 3 upper-triangular matrix in the lower right corner provides communication
between outputs. While these functions could be provided with processing components
in. séries or paralle]l swith the detwork, the fully-connectad-architecture provides a scaniless
intégration of these capabilities,
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4.2 Comparison with a Layered Network

Figure 4.2 highlights the benefits of the extra connections that are unused in a single-layered
network, ®

123 j N-IN - W(i,j} is weight connecting

' neuron i to neuron j

[0 no connection (W(i,j) = 0)

) connections in 3-5-4 layered network ®
il (1] additional connections with FCA

A\ 2A

Inputs

UL

(D Feedthrough weights - direct, linear
connection from Input to output

3 ‘, Flexibility - subsumes one, two,
3 ® Ndde?\'layered topologies

® Output crosstalk - communication

among nutputs
V ' ' V @ Input crosstalk - communication
Outputs among inputs

Figure 4.2: Weight-Matrix Representation to Highlight Benefits of FCA

e Peedthrough Weights: this seginent, shown in region 1in Figure 4.2, is a matrix that ®
itnplements a direct, linear connection from inputs to outputs (sigmoids are used only
on hidden units). This provides fast initial learning and wllows direct pre-pregramming
of a linear solution calculated by some other method. This is particularly important .
for control applications, where shere is a large bady of linear control knowledge that ¢
can be drawn upon to provide & good starting point. The IFCA provides for searmless

irtegration of linear and nonlinear components.

o Flexibility: since the FCA subsumes any number of hidden layers, when combined °®
with a systematic weight-pruning procedure, the netwurk topology (defined by the
remaining cannections) is set in a systematic manner based on gradient descent. The -
weights shown in region 2 of Figure 4.2 fepresem the flexibility of the FCA, in that— C .
the_connections may be cunfigured ‘o provide one and twahidden layer topologies (in Y
gunéral. any fesdforward network topalagy).
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¢ Crosstalk among inputs and outputs: these connections, shown in régions 3 and 4 of
Figure 4.2 may be valuable, i.e. ane output may excite ¢r inhibit another output, a
feature unavailable with layered networks.

The “disadvantages” (i.e. issues which must be_addressed) of the FCA include: -

o Increased complexity: pumber of weights increases quadratically with the nuniber of
hidden units, versus linearly for a layered architecture. The extra weights increase
susc¢eptibility to cver-fitting.

o Slower hardware implémentation: updating must be onc neuron at a time, versus one
layer at a time for layered networks.

‘This general architecture makes full use of the backpropagation algorithin, while still
allowing the use of modifications, such as the use of FIR connections in place of weights [37
or backpropagation through time [38], Figure 4.1 shows the exira connections that are
urmsed in a single-layered network. The question is whether the benefits of the enhanced
functionality cutweigh the increased computational load and susceplibility to over-fitting.
This must be decided for each application. A more detailed description of cach of thes~
features of the FCA follows.

4.2.1 Feedthrough Weights

For the robot control application, the most important aspect of 1hese connections is that
they provide a means for directly pre-programiming the network with i pre-calculated linear
solution. This results in fast reaction to a.destabilizing thrustee failure. Initializing. the
network to a good linear solution may result in a better final solution, as described below.,
Another benefit is that the feedthrough weights make it easy for the network to implement
a linear solution, so the FCA will work well when the actual solutien has a strong linear

component {a cornmon situation) supétposed with a nonlincar correction,

Motivatior. . .'usion of Prior Knowledge

Much is already known about how to find linear approximate solutions to many pioblems,
butli in control, and élsesthere, Often, the standard solution is a Lnear one, and. there are
miny highly advanced, very powerful, fincar design tools available. However, for many real-

world problems, there cre significant nonlinearities, and often the fallback ptoceduse is tn
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use a linear controller designed for a linearized plant. Nonlinear design methods exist, but
cerfainly not at the level of linear ones. One of the purported Lenefits of neural networks
is that thev address this problem with their adaptive, nonlinear approach [36]. .
Although a network often can be trained to solve a. problem starting with no prior in- e
formation, taking advantage of the (often abundant) linear theory can improve the learning
rate and provide a better solution if properly presented to the network. .
Beginning the network at a reasonably-good starting point can lead to & better final
solution if it prevents theé network from getting stuck in an unfavorable local minimum. ®
This can alsc.be useful as a learning guide. When Nguyen and Widrow trained the original
truck backer upper [48], the initial learning runs were made with the truck pointed at,
and a few steps away from the loading dock. After mastering this easy task, the initial
conditions were made progressively more difficult, leading the control system through a @
gradual learning process. Backpropagation-through-time training for unstable systems like
the truck can benefit greatly from some outside direction of the learning process. The
teaching process used by Nguyen and Widrow, and linear initialization of an FCA nétwork
is another, ®
In general, it is possible to use existing linear ¢ontrol theory to form a linear solution te a
problern {possibly « lincarized version of a nonlinear problem). In :i»ny cases, this solution
will in fact be a reasoriable solution to the full nonlinear problem. The feedthrongh portion
of the weight matrix offers a ditect vehicle to import and implement this linear solution as ®
part of the netral network. Simdlar alternative techniques to building in knowledge include — — -
fitst training the (leyered) network to emulaté the linear solutinn, then adapting from there,
of running, the linear solution in parallel with the network. One benefit of the 'CA approach
is the searlessness of the fétwork-lincar solition integration - it imraediately beconies part 9
of the network. Adaptation to this portion of the network can be turned off, use the same
algarithm_as the rest of thie network, or usé an adaptation algorithm based on linear theofy.

Approximate Linear Solution: Thruster Mapping Example

A sithple example of this_situation exists here: the exect solution to the thruster mapping
prolilem is highly nonlifiear and coraplex, but there is a linear approximate solution that may
be easily caleulated. 2he feedthrough weights of the fully-connected network architectore ®

simplify infusion of this ¢ priori knowledge.
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The a_priori linear solution used here was found by-assuming that the thrusters are
capable of continuous-valued thrust. output (a linearized version of this problem). The
solution is simply a 4 x 3 pseudo:inverse of the 3 x 4 matrix that maps reaction forces, R
(the set of four [-1,0,1] thrusters), to base forces, F. Recognizing that the direct feedthrough
segment of the fully-connected network provides exactly this computation (output = weight
matrix X input), it is possible to.incorporate this a priori knowledge by putting the pseudo-
inverse lincar solution directly into that sub-matrix, as an initial ¢ondition for the weight
matrix. This linear mapper is then rounded off to the actual thrusi positions possible at
run time (-1,0,1).

The problem is more complex if thruster failures are allowed, and the one-sidedness of the
thrusters is considered. For cxample, the linear approximate solution may request negative
thrust from a thruster, which is not physically possible (¢ertainly in space, and practically
elsewhere). The approach taken here is to find when negative thrusts are requested and
attempt to reassign these thrusts to positively-valued thrusters. T'his i$ done exactly when
two opposing thrusters exist, but is inexact when an opposing thruster does not exist for each
thruster. Since this provides only the starting point for adaptation, it is not critical that the
linear approximate solution is optimal. A solution that considers one-sided continuously-
valued thrusters is presented in {25]. This was developed for the Gravity Probe B satellite,
which is unique in having proportional thrusters, rather than en-off thmsters?.

Approximate Linear Solution: General Case

Alternatively, if a linéar solution is expeated to work well, but cannot be found through
analysis, the network.can find one adaptively. This involves zeroing allweights except the
feedthrough ones, and using the standard backpropagation algorithm. At this.point, with
a linear problem, convergénce will be very fast, as the cost function is parabolic (for direct.
supervisory training). Lhis increase in initial learning rate can be valuable for certain real
tirme applications, both on start-up, and after a significant change in the system, where it
is critical to find a stable solution very rapidly. Once the system is stahilized (if this i«
possible with a lincar conitroller), the rest of the network can bie freed up to deal with the
uonlinearities.

It is not necessary to zéro the cest of the weights when training the linear portion
- the linear weights initially leafnt at a much greater rate than the others when all arc

YThe satéllite catries liquid nelinm thar boils off slow'y and-must be expellad anyway.
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subjocted o the same training algorithm. This effect is explained below, and can. be seen

in Figure 4.3, which shows connection activation levels at various stages during training.

If implemented on a serial processor, and speed is an issue, it may be useful to skip these
extra computations during the initial learning phase, since théy do not contribute much to

the network performance.

g
FCA  §

Network b
H
3

Layered . §‘ ‘ s 5J

Network i o 0 ;&,
3 10 BP0
* N PPs

2 3

Figure 4.3: Network Connection Activity During Training

Mesh plots show the magnitude of network connéctions (weights). A weight niattix
format is used, as in Figure 4.2. Fully-cannected networks are in the top row, Jayered
networks in the bottom row. First plot is after.26 epochs.. Second plot, top, is after.
training with the feadthrough connections frozen (o the linear solution. Second plot.
bottom, i$ after training the layered network. Third plot, top and bottom, are the
final solutiors (local minima, afier all weights were allowed to adapt

A weight must contribute significantly to the output before the resulting error signal will
cause it to change significantly. If all weights are started small, the feedthrough weights learn
fustest, since the input and output inforthation provides an immediate error-gradient signal.
Once these signals build up, the crosstalk weights receive strong learning signals and begin
tw adapt. Starting all weights with an initial condition of zero will allow the feedthrough
and criosstalk weighits to adapt, but all other weights remain at zero throughout the learning
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because there-is 1o error signal duc to these weights to stimulate learning. It is common .
in network training to initializé these weights to some random values. Chousing the initial
condition for the “random” weights is a problem in itself. The method presented hy Nguyen
and Widrow {37] has proven to be valuable in this application.

Once the feedthrough weights have been found, either analytically or. adaptively, they
can be frozen or allowed to adapt, depending on the problem. In the ¢ase of an analytical
solution. af adaptive algorithm distinct from backpropagation may be appropriate.

4.2.2 Value of Cross-Talk Connections

In addition to the value of linear fuedthrough connections, the upper triangular matrices
contribute by providing the capability for crosstalk emong outputs and among inputs. Thesc
weights allow one output to excite or inhibit & higher-numbered output. As a clear example
for the thrustér mapping probletu, if the network were to have an output (0,1) for each of
the eight thrusters, and during training, a penalty was put on gas use, the network could
use this segment to allow the fiting of one thruster to prohibit the firing of the opposite
thruster (which would provide zero net thrust and waste fuel).. This is so clear that in this
case, it ¢ould perhaps most-easily be immplemented by manually programming these weights,
although thenetwork would eventually learn this as well. The examnple illustrates the value
of crosstalk between input and output neurons that is unavailable in a layered netwark.
Another example would -be the.capubility to select betwéen redundart. output patterns: if
(1 1¢0]and {001 1] both produce the same net force, they may both be equally Likely
to activate when that force is requested. This could result in eithér [1 11 1} or [0 00 0]
The crosstalk would allow the network to use the first output ta send it o eithet of the
acceptable solttions, and avoid the ambiguity.

Crosstalk hetween all outpurs wonld bhe nice, but backpropagation Lmits us to uni-
ditectional information. flow. This may make it impotant to select carefully tha ordering of
inputs and outputs. If riofe complicated, nonlinear crossialk is desired, extra neutons raay

be placed betweencindividual outpus or inpnt nevrons,
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4.2.3 Hidden-Neuron Interconnections
FCA Generalizes the Concept of Hidden Layers

The FCA is.a generalization of the fevdforward layered neiwork. It therefore subsumes
layered networks with any number. of hiddeu layers, i.e. it has all the functionality of a
twe or threc-lavered network. This ¢an be scen in Figure .4, which shows how two and
three-layered networks can be représénted by the FCA.

3.-5-4 Network 3-5-7--4 Network
~g—tor -1
X H [ no connection
et xR A (W(i,j) = 0)
: : [ connections in
layered network
[] additional connections
in FCA network .

Figure 4 4: FCA Subsumes Any Feedforward Layeréd Network

The FCA is shown to include (as subséts) all the connections available in two or
three-layered networks. [a general, it subsumes.uny feedforward network topology.
The matrix representation here is similar to (hat in Figure 4.2,

Since the ¥('A subsurnes any number of hidden layers, when.combined with a systematic
weightpruning praocedure, the.network topology (defined by the remaining connections) is-
set in a.systematic manner based on gradient descent. The weighte shown in region 2
of Figure 4.2 fepresent the flexibility of thie FCA in that the connections may be config
ured to provide one- and_two:tidden- layer topolegies (in geniral, any feedforward network
topologzy).

This flexibility is valuable, since often it is fict known a priori which uetwork topology
is best-suited for tlie application. Coupled with a systematie network pruning method
(presented balow), the FCA allows fur the netwosk topalogy %0 be automatically chosen.

One Hidden Layer or Two?

The topology of a network can liave a significant irapact on the functional-capabhilities of

the nenral notwork. It is generally accépted that at least one hidden lager is necessary to
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perform mappings that are not linearly-separable. However, the decision to use one hidden

layer. two, or more, is an active arca of research [1] [5] [7] [13])19] [21] [26] [30] [35] [41] [49]

[50] [55] [58]. This section presents-some background in this.area.. There is no ¢onsensus
armong the researchers = the number of hidden layers needed appears ta vary from one
application to another. Fortunately,.since.the FCA subsumes all layered networks, this ..
issue is not so critical if the F'CA is used with a systematic network pruning algerithm.

In “On the Representation of Continuous Functions of Many Variables by Superposi-
tion of Continuous Functions of One Variable and Addition,” A.N. Kolmogorov preésents
a mathematical proof regarding the functional complexity of neural networks. He shows
that a cine-lidden-layer network with 2n + 1 hidden n¢urons (where # is the number.of
inputs), can implement any continuous mapping from n inputs to m outputs [28). This is
important, since it provides a mathematical foundation for thie functional capabilities of
neural networks, but there areé two difficulties: (1) The nonlincar activation functions of
each of the hidden neurons is nat specified; (2) He does noi. show how to find the weights

or nonliticar functions.

In. “Multilayes feedforward networks are universal approximators,” Xurt Hornik, Max-
well Stinchcombe and Halbert White show that any function can be universally approxi-
mated to arbitrary accuracy using a neural network with only one hidden layer.[19]. This
requires that the network has “sufficient” hidden units, but no method for deterniining the
number of hidden units is given. Additicnally, there may be cases where a network with
more than one.hidden layer can implement the mapping wore efficiently (using fawer neu.
roas and connections, although more layers). This is more applicable than Kolmogorov's
woark, since the authors worked with standard sigmoidal nonlinear activation functions.

In “Feedback stabilization using two-hidden-layer nets™ (50], E.D. Sontag shows that.
while single-hidden-layer networks may be sufficient to implement direct input-output map:
pings, doulile-hidder-layer_networks are required (to. guarante¢ that-it will .work in the
general case) to implement one-sided inverses of continnous mappings. This is especially
iniportant in éontrol problems, whete it is cofrimon to invert a plant model. This is the case
in the thrustér mapping. whére the thruster mippet is an invefse of the thruster-to-force
mapping defined by the thrustér parameters.

In “Why two hidden layers are hetter than one” [9). D.L. Chester presents an example
where a sitaple two-lidden-leyer network is sufficien®, but-an infinite number of hidden .
nedrons would he réquired if a single hidden laver were used,
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In “Threshold circuits of bounded depth”{15], A. Hajnal presents problems requiring an

exponential number of nodes in a single-hidden-layer network, but & polynomial number of

nodes in a double:hidden-laver network. .

As far as using one or two hidden layers for.specific applications, different researchers
have found success with both architectures. In [21] and [30], networks with onc hidden
layer are found taperforin better than those with twa.hidden Jayers. In [26], [41], and [55],
networks with two or more hidden layers are found to perforin better.

Since the decision to use one or two hidden layers is simply not an issue with the FCA,
the lack of consensus en this issue is not a major concern.

4.2.4 Learning Performance: FCA vs. Layered

Figure 4.5 compares learning histories (thruster mapping error on the trainiag set) for the
thruster mapping problem (with direct training) outlined in Chapter 2. Three networks are
compared, ¢ach with & hidden. aeurons. Each was trained_to emulate the optimal mapping
(minimizing force error). ‘Iraining a neural network is an iterative nonlinear optimization,
and will usually produce a différent result. cach time it is run, provided with a different initial
condition. Tor this reason. results are presented as the average of several runs, each from
a different initial condition of the weights. In this plot, each curve in the figurc represents
the average performance for ten different scts of initial weights.

This is the direct training problem mentioned. in Chapter 2. Even though indirect
training is the ultimate objective, in order to demonstrate the performance of the I'CA,
the direct training problem is studied heére first. Direct training is much simpler, while still
containing al. of the architecture issu2¢ to hé found in the indirect training problem. .

Louking at the initial learning performance, the FCA. natwork performs better than
the layered network, due to the weight gradient being instantly available via. the direct
connection of inpuis to outputs. As-expected, the. FCA nétwork.with the a priosi hnear
sohition built in provides the best early performance. Althaugh the randomly-initialized
networks catch up faifly quickly liere, this initial head-start can be critical for a control
application becauseé it can mean the difference between stability and instability. This will
be demonstrated later, in Chapter 6.

In the middle region, between 100 and 1000 opnchs, the layéred network petformance
surpasses that of the F'CA, due to the reduced number of parameters, and simplificd scarch
space. However, aftér 1000 epochs, the greater fitnétionality of the FCA network couies into

B S PP L P PR . o .
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Figure 4.5: Training Performance Comparigson

The fully-connected network (FCA) learns much faster at first, due o the linear
connections. After the initial surge, the lavered network pusses it dué to thé re-
duced number of parameters and.resulting faster learning. Towards the end, the. .
fully-connected network’s petformance is significantly betier - highlighting its extra
capabilities. This is not surprising. siice the FCA nétwork subsumeés the function-
ality of the layered nstwor) The tietsork initialized with the-linear solution begins

with significantly hetter performance

61

play, and performance surpasses that of the layered network. This is of course expected
since the FCA network has all of the connections of the layered network in addition to the

extra.ones described enrlier. The FCA netwosk witl the a priosi solution frozen in has

slightly worse final performance. since the fecdil.fough weights are riot adapted in this case,
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4.3 Architecture Selection to Avoid Overfitting

4.23.1 Overfitting

The above has shown the potentiai value of the extra connections. associated with a fully-
connected neural network, both in_faster.initial learning and.in better final performance.
However, the high number of parameters, while increasing functionality, niakes the network
susceptible to over-fitting. A layered network with 7 inputs,  hidden neurons, and o outputs
has (i -+ 0)h weights, while a fully-conneécted network has ((i+ 2+ 0)(i+h=-0-1)/2) weights,
not counting bias weights. More parameters to adapt means the network will be slower to
train, and possibly susceptible to overfitting. This is an important concern with the FCA,
and must he addressed.

A comman method for evaluating the level of overfitting is to use a method known as
“cross-validation.” In this method, a set of input-output data (known as the “test set”) is
Lept separate from the set of data used for training the network (known as the “training
set”). Periodically, the network’s performance on the test set is evaluated. A decrease in
test-set performance coupled with an increase in training-set performance indicates overfit-
ting. At this point, the weights in the network have begun to adapt to the particulars of
the training set (e.g. moise or lack of sufficient data), rather.than forming a generalizatinn
of the full population from which the training samples are chosen.

Figure 4.6. shows how averfitting affects performance for different training set sizes.
Overfitting becomes clear when the performance on the test set remains the same or wors-
ens, while performance on the training set.improves. It is common that during training,
performarce on test and training sets will improve until a ¢ertain point is reached when the
network stops generalizing, and bugins to fit the particular data set. Use of a “sufliciently-
large” training set cai reduce over-fitting problemsg, buf this may not be practical due to a
lack of data, or to an adaptation speed requirement that needs a faster solution than this
data-intensive brute-force approach,

4.3.2 Systematic Complexity Control

When training function-based neural networks such as this FCA, the goal is to achieve good
gencralization by presenting the network with a large number of sample input patterns along
with the dosifed outputs. The hope is that the parameters that define the functionality of
the nefwork will adapt to fit this training data, and will then respond corractly when
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Figure 4.6: Training History, Performance on Test. and Training Data

Overfitiing, as seen by the divergence on training and iest performance, is more of
a prohlem for small training sets.

presented witl.new inpnt patterus. The danger of overfit ting arises when the network has
an excess of parameters to fit: the danger is that these parameters will be used to fit the
noise in the data aid lead to poor generalization.

It is generally accepted that the fewer parameters used in the model, the less ¢hance of
excess functionality being used to fit noise, resulting in better generalization. The task now
is to find out which conunections are requited to implement the desired mapping, and build
a network using only those weights. The network architecture selection could be performed
manually, but this would not be practical. For.this problem, a network with feedthrough
connections, weights coirespoiiding to a layered network with-five hidden neurons, and the
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crosstalk. connections on the outputs, would probably work well and not be susceptible to
overfitting, given a good training set.
This heuristic approach may overlook some valuable extra connections, and may still
result in.overfitting, so a systematic network-pruning technique is desired. One that was [ ]
found to be successful involves a madification of the cost function that the neural network is
trained to minimize. This approach was first proposed by Rumelhart and Weigend [44] [59].
The ¢ost function is augmented with a term that places a cost on the ¢omplexity of the
neural network (complexity is defined by a mathematical function of the weight values). ®
The neural metwork is then trained to minimize this new cost function, using the same
gradient-based optimization methods as before.
This complexity-control structure is based on the following assumptions:

1. The best generalization is the least-complex one that still performs an input-output
mapping with an acceptable error. Therefore, there ia a user-defined. parameter to
determine this balance between complexity and mapping performance.

2. The complexity of a mapping is related to the number of connections between neurons. L
Therefore, the cost associated with each connection is zero when the connection is zero,
monotonically increases as the weight magnitude increases, then. plateaus at a large
weight level. This way, the total complexity cost varies with the number of non-zero
weights, rather than with the size of the weights. The relatively-small weights will be @
reducec towards zéro, leaving the larger (and supposedly useful) ones unrestrained.

The complexity-contrel term is shown in Equation 4.1, and presented graphically in
Figure 4.7.

,v ,v ’.‘..L) 1
AT (1.1)

=1 5= Uy
i= 13 :+l (uo)

Jcomple.niiy

where, 9

Jeomplezity = complexity cost
i = ntmber of neuron where connection originates

J = number of neuron where connection terminates
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Figure 4.7: Complexity-Cost Function

Weights having valuss near zero cost little. Weights with high values (indicating
that they contribute significantly to the néetwork’s function) cost A, but the gradient
is.small, so there is little incentive to decrease them. Weights near the inflection
point are small (they do not significantly affect network performance). The slope
“here is highest, 5o the network has the most to gain by decreasing them.

&N = total number of neurons

wij weight denoting the connecti.a strength from neuron.i to neuron j

u' weight normalization parameter

(4.2)

Selecting the scale factor effectively séts the cutoff point for weights - it determines where
the inflection point of the complexity cost function occurs. This defines the transition from
a néarly-parabolic (for w << uyp) cost surface to one that asymptotically approaches (for
w >> wy) a flat surface (i.e., with 2ero gradient). For w << wy, weights are very-strongly
driven to.zero, whereas for w > > wy, the gradient is near zero, and weights are not réstricted
significantly.




66 CHAPTER 4. FULLY-CONNECTED ARCHITECTURE
L J
Selecting a high g will result in a nearly-parabolic cost function that keeps all weights
from growing too large. In the parabolic section, the gradient acting against each weight is__ .
roughly proportional to the magnitude of that weight.
Selecting a low wp will have the effect of shutting off completely some of the weights, o
while not affecting the others. This parameter is selected iteratively by the user,
The complexity-control term is added to the total cost function. with a weighting pa-
rameter, A, as follows in Equation 4.3.
L
Jiotal = Jperformar.ce + A Jcom;\(e:n‘ty (14.3)
where,
]
Jiotat = total cost function to be reduced by gradient-based optimization
Jper formance = network-performance cost function, $nch as shown in Equation 2.5
Jeompierity = network-complexity cost function, shown in Equation 4.1 ®
A = complexity-cost weighting parameter
(4.4)
The weighting parameter, A, is sct by the user on an application-by-application basis ... ®
to-achieve the desired balance between performance optimization (e.g., thruster-mapping
performance) and complexity minimization (i.e.,.to teduce overfitting prablems). The pa-
rameter can be adjusted iteratively by obsetving performance on test and training data
sets..such a8 those shown in Figure 4.8. ®
Equations 2.5 1.1 and 4.3 are combined,. resulting in the total cost function shown itt
Equaticon 4.5.
Fepl TIN? | £ B (DN (To(TV? 1 E ®
JI [ = ( :en ) +( Vesr ) +(_}_¢r_r___..) PR, Tk
fot2 [ Fihruster Fihruster Tthruster 2 ,‘Z::l
N N )
+AY ST | e — (4.5)
1=1 j=itl (-;":—‘:) 1
L J
where,
[
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Jiotal = total cost function to.be reduced by gradient-based optimization

zee(T) = net force error in x-direction, (F;,,, - F,,,), resulting from T
verr(T) = niet force error in y-direction, (Fy,,, = Fy,. ), Tesulting from T
Tieer(T) = net torque errorabout ¢-axis, (7y,,, = Ty..), resulting from T

Fihvuster = normalizing factor for Fy,,, and F,,, , force per nominal thruster
Tthruster = u0rmalizing factor for ry_, ., torque per nominal thruster
T = binary thruster values, [ N T I Ty Ts Te T; T ]
& = thruster number
A = complexity-cost weighting pararneter
i = number of neuron where connection originates
J = number of neuron where connection terminates
N = total number of neurons
wi; = weight denoting the coanection strength from neuron i to neuron j
woe = weight normalization parameter
(-1.6)
The benefits of this methad may be seen in the training histories shown in Figure 4.8,
The nétwork had five hidden neurons; and without any sort of complexity reduction. overfit-
ting is clearly a problem, given the reduced training set. With the addition of the complexity
term, overfitting was controlled, resulting in comparable performance on test and training
gets.
The complexity control function and training histories for a fully-connected network
with & hidden neurons are plotted in Figute 4.8, Without complexity control, over fitting
becomes clear at around the 4000th epoch, as the performaunce an the test set worsens.

while petformance on the trairing set improves, With the addition of the complexity term,
over-fitting is controlled, as parformance histories on test and training sets no longer diverge

4.3.3 Othcr Complexity-Control Methods

Many systeniatic uetwork-pruning techniques have been proposed and used surcessfilly in

certain applications. For, exainple “weight decay™ uses a cost. function like X( w?)) to try to

- e ———— —r— et Dt
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Figure 4.8: Complexity Cost Reduces Overfitting

In the case with no complexity control, the divergence of network performance on
the test and training sets indicates overfitting. Addition of a complexity cost term
is successful in controlling overfitting. Although trairing performance is worsened,
perforrnance on the test set is improved, which is of course thé desired outcome.

reduce all the weights [39] [10]. Other methods completely eliminate connections or neurons
in an itérative process (48] or witk a genetic algorithm [65]. A survay of pruning inethods is
presented in (42]. The methord used here has been shown to be effective in this application,
but other taethods way work as well or better at improving generalization performance.

4.3.4 Automatie.Growing of the Network

The above-mentiohed complexity contral method works by selecting a network topolugy.

and ther tritinitg the excess canneetions to achieve the desited complexity. An alternative
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is to.begin with a small network, and add neurons to achieve the desired fu nctionality. One
advantage of growing a network is the potential for an. increase in learning speed. With
fewer hidden neurons, very quick learning takes place since fewer computations are required
(this would. not be true for.a parallel hardware implementation,. but is.true for the more
comnaon serial implementation). Additionaly, fewer training patterns are required. (to avoid
overfitting), further reducing the number of computations.required during training.

Growing the network is not a new concept, it is similar to the Cascade Correlation net-
work proposed by Scott Fahlman, in which the network is grown one neuron at a time (11).
This has been found to have benefits beyond the reduction in required computation: re-
duction of the “moving-target” problem?, and reduction of susceptibility to getting stuck
in local minima. The network adapts until performance asymptotically approaches an opti-
mum; then a neuron is added. These extra degrees of freedom are often sufficient to break
the network out of a lo¢al minimum. In Cascade Correlation, the previous hidden neuron
weights are frozen while the weights for the new neuron are adapted. This simplification
of the search space reduces the movirg-targer. problem. It can reduce computation if batch
training is used, and the previously-calculated neuron activations are stored in mermory.

In.the real-time implementation required for the rabot-control application, the network
is grown automatically. Beginaing with & small number of hidden neurons and a small
training sét, the initial learning rate is high. As network performance plateaus (measured by
a sustained cessation of improvement in test set performance), hidden neurons are added, a
small batch.at a time. As tiie number of hidden neurons increases, the network perforimance
approaches optimality, but at the expense of slower training. This approach fits well with.
W'e.control application, since rapid stabilization and coarse optimization are important,
while rapid attainm. :at of néar-optimal control is not so ctitical.

4.4 Summary of Implementation Issues for the FCA

The above has outlined the features of the new FCA developed in the present reseaich, and
of a number of issues in using it effectively. The specific use of complexity control, network
gfowing, and the extra conaéctions offered by the PCA, will va ty from one application to
another. The iraplementation issues for the fabot-control gpplication ate sutlined here.

2This refers to the virights changing ditecrions and hack-tiucking theemghont the trdining while tie
netwotk approuches a fincd sclution. While this is not ficerssarily fiad, it can slow down learning
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¢ The FCA's feedthrough weights are the most important feature, as they provide
near-immediate stabilization. Some implementation requirements, such as the use
of parallel hardware, or the use .of software optimized for vector-processing on a serial
computer,.can place a high cost on the use of hidden layer interconnéctions. In such

4 case, these connections may need to be ¢liminated,

¢ The use of automatic growing has been found to proguce a significant improvement in
initial learning rate. Since the added coding requirements are minimal, this technique
should be used whenever there is a requirement for fast initial learning.

¢ Complexity control is simple to implement, and has been shown to reduce overfitting
problems, so its use is recommended.

Many modifications to backprapagation that claim to bnprove learning speed have been
proposed in the litérature, Backpropagation is an algorithm for efficiently calculating the
derivatives of the weights with respect to & cost function in a neural network. Once this
gradient estirnate is obtained, any of the several existing gradient-based optiniization meth-
ods may be used. Some algorithms specific to neural networks have lieen .developed that
attempt to take advantage of some features specific to neural-network optimization.

The simplest implenientation multiplies this gradient estimate by a fixed parameter
to caleulate the change in weights. More complex implementations adapt this learning
raté parameter, or add a “momentum?. term. thal sums past gradient estimates to filter
out high-frequency noise and integrate low frequency trends. Several other cethods, such
as conjugate gradient, Levenberg:Marquardt, Quickprop, and other second-erder gradient
optimization rchemses have proven successful in certain applications. However, the henefits
of each algorithm appear to be somewhat application-dependent.

For the robot-control application, batch-learring, adapiation.of. the learning rate (in.
this case, a.matrix of independent learning parameters is used. -~ adapted independently
for cach weight}, and use of mamentum dre used to accelerate leataing, For the thruster
mappifyg applicatioi;, this combination of enhanceraents to backpropugation has heen found

to pruvide the best trade-off betweau simplicity of implementation and rate of adaptation.




Chapter-5

Gradient-Based Optimization for

Discrete Systems

Tle previous chapter dealt with direct.training, and lad to the development of the neural-
network architecture used to implement the thruster mapping. To allow indirect training,
where the learning signal (error) is gencrated based on the robot-modcl.output (rather than
on an optimal teacher), the error must be backpropagated though the robot model. The
discontinuity introduced by the use of the robot’s on-off thrusters presents a significant
obstacle, and makeés absolutely necessary the development of the-new training m.ethod
presented here. The solution to.this problem is, in turn, a general algorithm for performing
gradient-based optimization for systems with discrete-valued functions.

The discrete-valued functions did not causé a problem for.direct training, since in .
that case the discrete- values. are supplied as the. output patterns in the training ses-(e.g,
[1.87-0.76 0.11] gots mapped to [0.0 11 1.0 0 0)). The fact that the target ontputs dre
restricted to 1's or 0 doés not aflect the training. However, for indirect training, the on-off
actuators aré feptesented by discrete-valued functions that are used as a forward niodel in
the Lackpropagation training.

In this chapter. a fiew technique for backpropagation learning for systems with discrete.
valued funcrions. is preseiited. It is applied to the on-off thrustes éontiol problem de-
seribed in Section 2; as well as to the genric problam of traifing multi-layer signumi net-
works [69] [70] [73).

71
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5.1 . Problem Statement

Optimization.methods that use gradient information.often converge much faster than.those
that do not.. Use of the backpropagation algorithm [46] [60] to get this gradient information
for training neura) networks has made them useful in many applications; however, back-
propagation’s requirement of continuous differentiability, not only for the network itself, hut
for anything through which the error is backpropagated (e.g. the plant model in a control
problem), limits its applicability.

This is a significant limitation since there arc many applications where discrete-valued
states arise. For example: on-off thrusters comnmonly used in spacecraft (the example
used in this research); other systems with discrete-valued inputs and outputs; and neural
networks built with signums (also known as hard-limiters or Hoeaviside step functions) rather
than sigmoids. Sigrum networks may be preferred to sigmoidal ones due to hardware
considerations.

In cases like these, one choice is to use an alternative method not restrictéd to con-
tinuously-differentiable functions, such as unsupervised learning, sitnulated annealing. or &
genetic algorithm; but these are uwsually significantly slower to train, because they do not
use gradient information.

Also, it is common for a problem to be well-suited for gradient-based optimization, ex-
cept for the presence of discrete-valued functions. The neural-network thruster mapping is
a prime example: a neural network (differentiable) produces an output that is discretized
(with a non-differentiahle function) and then passed through a model of the rebot-chruster
system (differentiable) before the perforinance can be evaluated and used for training. Ex-
cept for the DVIT, this problem is well-suited for gradient-based optimization. Rather than
5o to a completely different solution strategy, it is desirable o introduce a modification
to gradient descent that will accommodate the non-differentiable functions. This sort of a
situation is rather common when DVFs are involved - the DVFs often represent ~ small
portion of the overall system, but the problem they present for gradient<based optiniization

is formidable.

5.2 Related Research

This problein is related to a sitnilat piobien that has receivied sonie attention in the ficld of
neural networks: teaining niulti-layered networks of hard-lmiting-newrons, The algorithm
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presented here.will be shown to.be.applicable to this problem. This section presents a
historical background and related research directed towards training signum networks.

5.2.1 History of Neural-Network Training With Smooth Activation Func-
tions

Before the task of training a network built with DVE's is examined, it is useful to consider
the history of the feedforward neural network, and why the sigmoid function was chosen in
the first place.

Learning algorithms for single-layer signum networks date back to 1960, with Widrow's
ADALINE (ADAptive Llnear NEuron) [67] and Rosenblatt’s Perce; ‘ron [43]. Uanfortu-
nately, neither of these methods extends directly to multiple layers. Minsky’s proof of
the functional limitations of single-layer Perceptrons {32] [33] combined with this lack of a
learning algorithm contributed to a reduction in interest in neural networks in the 1970s.

In 1974, Werbos [60] presented the backpropagation algorithm for the first time, While
the mathematics of the algorithm may be traced back to work in 1969 by Bryscn on optimal
control (6], Werbos developed the algorithm for a number of applications, including neural
networks built with sigmoida) activation functions in the hidden layer. Unfortunately, this
work was largely unnoticed until its rediscovery and publication by Rumelhart in 1986 [46].
The key exténsion that allowed training of networks with hidden layers.was the replacement
of the signum with the sigmoid. This allowed Bryson’s work with multistage optimization for
dynamic systems to be applied to gradient-based optimization with. the now-differentiable
neurons.. It is understood that use of a sigmoid in place of 2 siguum is compugationally _
more éxpeénsive, without providing significant- added functional complexity: however,. the
use of a function that is continuously-differentiable. allows for the application of the efficient
gradient-based optimization methods developed by Btyson.

5.2.2 Neural-Network Training With Discrete.Valued Activation Func-
tiong

MADALINE (Many ADAptive Llnear NEurons) Rule I was a two-layer network (ong hidden
layer) thar had a trainable first layer, but the second layer was a fixed logic operatior,
such as OR, AND, or MAJ (majority) [18}. In MADALINE Rule II. Winter [74] used
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a heuristic approach which had limited success at training a two-layer network of hard- .

limiters (ADALINEs). These methods may be classified as “error-correction rules” rather
than “steepest-descent rules” (gradient-based) [67]..

In recent research aimed at using gradient-based learning for multi-layer signum net-
works, Bartlett and Downs.[4] use weights that are random.variables, and develop a training
algorithm based on the fact that the resulting probability distribution is continuously dif-
forentiable. ‘The algorithm is limited to one hidden layer, requires all inputs to be 1 or -1,
and needs extra computaticn to estimate the gradient.

Another method is to approxirate the discrete-valued functions with linear functions or.
stooth sigmoids during the learning phase, and switch to the true discontinuous functions
at run-time. This is similar to the original ADALINE, where the neuron was trained on its
linear utput, but in operation, this output passed. through a signum function. [67). This
method may wark in cases where the behavior of the system with sigmoids is close enough
to that of the real system; however, this assumption is very often unreliable.

5.3 A New Training Algorithm: Approximation With Noi-

sy Sigmoids

The method of noise injection is introduced by applying it to the training of a single hatd-
limiting neuron, as shown in Figure 5.1. Although this neuron ccald be trained with the
ADALINE or perceptron learning rules, those methods.do not extend to multiple Iavers.
The method preseiited here does not have this significant restriction.

The first block diagram in Figure 5.1 shows the neuron. as it appears «t run timé: a dot
product with hard lirgiter. For simplicity in bookkeeping, the input, X, and weigh?, 1¥,.
vectors are augmented to include the threshold bias for the output function. The next two
diagrams show. the neuran during training, where the signum has been replaced by a smooth
signmoid function. ‘The input, X, is propagated through the forward sweep, finally resuiting
in an error, ¢, and a cost. The derivative of this cost is calculated and propagated though
the backward sweep, resulting in a dcost/OX to be propagated to more unite upstreatn,
and a dcost/Inet to be used in calculating decost /OW, which is used in the weight-nupdate
algorithm.

This is almost the same as training a standard neafon with backpropagation; the only
difference involves the injection of zerc-mean noise, N, immediately before the sigmoid.
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Figure 5.1: Training Algorithm

During training, replace discontiniious signums with sigmoids, and inject noise be-
fore the sigmoid on the forward sweep. The backward sweep calculation is the same
as standard backpropagation.

&=

While the mechanics of the backward sweep are identical, different weight updates result
because the forward s eep resulted in a different error,
Note that the-n. ce injection does not corrupt the calculation of deost/AW (just as ihe
desired signal does not). Using an unmodified backward sweep is not only the simplest
thing to do, it does precisely the right calculations for estimating the weight gradient.
What makes this method useful is that as the noise level increases to cover the sigmoid's —
transition region, adaptation with_the resulting deost/dW leads to a set of weights that
work well for the signum network..
Ta summarize, the training algorithm is:

¢ Replace the hard-limitérs with sigmoids during (raining
o _Inject noise immediately bofore the sigimoids on the forward sweep

o Use the exact same hackward sweep as with standard backpropagation

5.4 Intuitive Explanation

Withaiit addition of naise, the network may traif using sigraoid out put values jr. the sigmoid
teansition tegion (roughly -0.8 to 0.8) tliat will e unavailable at run titite. Simply rounding
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off at run time may introduce significant errors. For example, in a hypothetical cost surface,
2 value of 0.4 may be optimal, but if forced to choose between -1 and 1, a value of -1 may
be better.

The problem is much more apparent when the DVF outputs are recombined, such as
with the output layer of.a network built with hidden signum units. This also.occurs when
the robot-thruster physical parameters combine to.produce a three-element force vector
based upon the binary eight-element thruster vector.

The goal of noise injection is to move neuron activations away from the transition region,
so that roundoff error will he small when the discrete-valued functions are replaced. For
this reason, the standard deviation of the noise is chosen to be higher than the width of the
transition region of the sigmoid.

Figure 5.2 shows how the neuron cutput distribution changes as the noise level increases:
with no noise, only a single output can result; but as noise increases to cover most of
the transition region, the output distribution approaches that of a hard-limiting function.
Differentiability is maintained, however, so that gradient information will be available to
speed up learning. Since the noise has pushed the distribution to approximate a hard-
limiting nonlinearity, when the hard-limiter is re-introduced at run-time the performance
degradation will be small.

5.5 Application Considerations, Extensions .

&.5.1 .Selection of Noise Level

One.concers. i the artenuating effect of the .derivative-of-sigmoid function. When back-
propagated through many layers of near-saturated sigmoids, the error signal is attenuated
and may l¢ad to slow learning, To handle this problemn, it may be necessary to be gradual in
increasing the noise level; slowly push the outputs from the linear region to the hard-Bmits,
rather than all at once. However, sirice all the experiments presented here had 2 single layer
of discontinuity, no such gradual ificrease was required.

For training networks with simple bi-level sigmoids. once the noise reached a sufficient
level (roughly 0.5 and 3 in two different applications), there wag no degradation if it were
increased beyond that level. The anly possiblé drawback is the attenuation eéffect mentioned

above. The required noise level varies in differens applications depending upon how sharp
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Figure 5.2: Effect. of Noise Level on Sigmcid Output Distribution

Lightly-shuded region in column } represents the sigmoid input probability distri-
bution (in this case, —0.3 + uniformly distributed noise). Darkly-shaded region
in column 3 is the sigmoid output distribution (from -1 to 1). Each distribution
has.an area of 1. Input and Qutput are plotted. together in column 2.to show
how the sigmoid praduces this input-outpul relationship. As noise level increascs, .
and the input distribution spréads out, thé sigmoid output approaches that of a
harcl-limiter, while remeining differentiable.

the decision Loundaries would be with no noise (i.e. if it's a sharp sigmoid to begin with,
not much noise is needed to force it ofi the transition region).

When multi-level sigmoids ate used, as seen in Figure 5.8, there is an upper limit to
the noige level: too much noise inay cause the individual sigmoids to overlap, which in this
cxample would blur out the middle level, The specific léval of noise at which this effect
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begins depends upon the sharpness of the sigmoids and the discrete values approximated.
In Figure 5.8, with a sharpness factor of 4 (slope at midpoint = 4) and ¢ne unit between
discrete levels (-1,0,1), this effect begins around IV = 0.2 and is significant at around
N == 0.3. These.values could have been predicted by sketching t}.. limits of the noise-altered
funetion (the shaded region in Figure 5.8) and determining at what point the middle region
(input = Q = output = 0) becomes affected by the noise.

The key idea in this algorithm is that the network performance error is linked to round-
off error due to use of the sigmoid transition region. The goal of the noise injection is to
discourage use of this transition region. Therefore, whether use is discouraged using Gaus-
sian noise, uniform noise (used here), fixed-level noise, or additive penalty functions, the
effect is qualitatively the same.

5.5.2 Discrete-Valued Functions Other Than Bi-Level Signums

If adapting a system that contains discrete-valued functions that are not siraple Heaviside
step functions, the method may work if a continuously differentiable approximating function
is used. For example, a function whose output can take on multiple discrete values may be
approximated by combining multiple sigmoid functions. For the thruster mapping problem
described in Section 4, the thruster can take on three states: forward, off, or backward.
Two bi-level (-1,1) sigmoids were summed to produce a tri-level (-1,0,1) signmoid.

In fact, the sigmoid-based approximation may be developed through a supervised train-
ing technique using standard backpropagation. The limitation introduced by the atten-
uation of ervor signals is .again a factor, and must be considered when developing the
smooth approximating function. This can be done by limiting the.sharpness of the sig--
moids if programming by hand. If training the approximating finction, adding a complexity
cost [59] [71] will keep the weights small, and will systematically limit the sharpness.

5.5.3 Batch Learning

The randomness.introduced with the addition of noise could make learning slow because
of the reduction in signal-to-noise ratio in the weight gradient estimation. Batch-learning, .
using the cxact same training set from one epoch to the next worked well (considering
the “training set” to include the “iuput set” and “noisé set”). Freezing tle trainirg set
and noise set. defines a fixed deterministic cost hypor-surface. With a fisted codt function,
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on-line tuning of momentum and learning rate can be applied to improve dramatically. the

canvergence rate.

5.5.4 Optimization of Discrete-Valued Parameters

Another area where this method has potential is for optimization problems that have dis-
crete valued parameters. Jor example, a design optimization problem where the task is to
select the right DC motor, pipe diameter, or gear ratio from a finite set of discrete- valued
options. It is expected that this method will extend well to this family of problems [31).

5.6 Application to Training Multi-Layer Signum Networks

In this section, this rnethod is shown to extend to multiple layers of hard-limiting units with
no medification. Figure 5.3 summarizes the method: during training, replace e¢ach hard-
limiter with a sigmeid and zeco-mean independent noise source. Note that the sharpness
of the sigmoids does not matter at all here (except for numerical ronsiderations), since the
sharpness factor simply multiplies the weights, and the weights are adapted.

Run-time Training

Figure 5.3: A Multi-Layer ‘sighumn Network, Seen at Run-Time and During Train-
ing

Ir: the first test, an.adaptive 3 - 5 - { signum network is trained to emulate the input-
output mapping defined by an .: dependent, fixed, 3 — 10 - 4 sigmoidal network. Fewer
hidden netirons are used in the adaptive network to ensure that overfitting will not introduce
unneécessary complications. The 3 - 10 = 4 network's fixed weights were randomly chosen
between -2 and 2.
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Figure 5.4: Training with Noisy Sigmoids of a Multi-Layer Signum Network,
Artificial Training Set

Left: with higher noise levels, performance on the noisy sigmoidal network ap-
proaches that of the signum network, indicating that the noisy sigmoid is a valid
(and differentiable!) upproximation for the signum. Right: As noise increases, the
network adapts to sharpeén its sigmoids, causing the first layer weights to increase,
and the sigraoid output distributions to approach hard-limiters. Activation distri-
butions were collected over the whole training set, with no noise added.

Performance is shown in. Figure 5.4, Each dot on the graph répresents the final perfor-
maice after a full training run (10,000 epochs or until a local minimum was reached). Seven
valués far noise level were chosen, and ten different network initial conditions were used at
each noise value. With no noise, performance is good for the sigmoidal network, but when.
the sighums are réintroduced at run-time, the error increases dramatically. One point is. off
the graph at an error of over 6 units. As noise increases, performance on the sigimoid network
decteases, as expected, but the signum-network-performance improves, and approaches the
sigroid-network-parformance. The weight magnitude and neuron activation distribution
plots confirm that as noise increases, the noisy sigmoids behave like hard-limiters. Note
that these activation distributions could not have been achieved by manually increasing the
sharpnéss of the sigmoids: this would have had zero net effect, since the network wonld—
adapt the first layer weights to counteract ezantly the sharpness increase,
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gure 5.5: Training a Multi-Layer Signum Network, Thruster Mapping

In the second application, shown in Figure 4.5, the hard-liraiting network is trained to
etmulate the optimal thruster mapping. which will be described in detail in the fext section.
For now, this mapping is used as an independent second test of the racthod. A similar
dramatic improvement in hard-I'miting performance occurs as noise increases past about
0.5. It is not shown on the plot, but good performance is cltained at least up to a noise lovel
of three. Tle training set for this raapping represents continuous values being mapped to
discrete valies, sc the first-layer weights are high (indicating sharp decision hyper-surfaras),

éven for noise = (.

5.7 Application to. Thruster-Mapping Problem

I order to demonstrate this new training procedure. it was applied to the thru e - oning
with indirect training. as shown in Figure 5.6 or the top s=ctior of Figure 2.13 « . r: . rase,
the optimal mapping is 10t used, and the néural network rust learn the mapy - v reugh
experinentation with the plant model. This requires back-propagation of ervor through
the discontinuous thristers, which motivated development of the noise iijection method
prasented in this chapter.

Training without this noise-injecticn technigne produces large errors, hecanse the dis-

crete-valued nature of the thrusters is not énforced during tetwork training, and large
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Figure 5.6: Thruster Mapping, Indirect Training Method
e
roundoff errors result at run-time. For example if one unit of thrust is requested in the
+r direction, during training. the network will set Ty and Tz to +0.5; but at run time, for
requested forces near 1.0, 7'y and Ty are likely to both be 0 or both be L, résulting in a large
error.
o
Thruster Models Performasice on Actual Plunt, Different Models
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Figure 5.7: Results of Indirect Training, Two Differentiable-Thruster Madels
The sigmotd-bused apsproxination (without noise) is hettet than the linear mode!, e
but has hmited perforrnance. The results from divect training represent a lowver limit
{or conpatison. Mapmng ervor is average percent error abuve the optimal mapping
(which tésults fromn an exhaustive search of al! possible thruster combinations).
T he shaded areas represeiit the mean & ¢ [or ten different runis, 3 — 10 - 4 layered
uetsorke were nsed
o
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Figure 5.8: Results of Indirect Training, Noisy Tri-Level 8igmoid Thruster Model

Left: the sigmoid sharpress factor (slope at the midpoint = 4) ard noise level {0.15)
for the noisy tri-level sigmoid appear to be mtuitively correct. Right: as posse
increases, perforrnance approaches that of the network trained directly (emulating
the optimal mapping ), with best performancen at a noise level of abeut 0.15. 3-10--4
layered networks were used.

Figure 5.7 shows the result of indirect training with two differentiable thruster mod-
cls. During training with the continuous thruster models, the neural network produces a.
mapping with a very [ow error, which is not plotted here. However, when the continu-
ous thrusters are replaced by signum thrusters at run-time, the error is large, end is the
“thruster mapping error” plotted in the 1ight half of Figures 5.7 and 5.8, The errors are
high because the nctwork learned to optimize the solution using outputs that would be
ut.available at.fun-time. The resulting roundoff error is unknown to the necural network
during training.

In Figures 5.7 and 5.8, each dot represents the final performance after a 10.000 epach

training run. The shaded regons ropresert mean =z @ performance for ten runs,

Figure 5.8 shows the results when the thrusters are modelled by noisy tri-level sig-
moids. With.noise = 0, error is high. corresponding to the data in Pigure 5.7, but a-
nuise increases, performance approaches that of the netwark trained ditectly (emnlating the

optimal mappiie).
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The direct-training performance représents a lower bound set by the functional .com-
plexity of the 8 = 10 - 4 layered netwark. The best noise value iu thig application seems
to be arcund 0.15, and the resulting noisy sigmoid is shown in the left half of Figure 5.8.
Examining this figure, the sigmoid sharpness and noise.levels seem to be set correctly ac-
cording to intnition. As nois¢ increases bevond 0.2, error increases as expested (the “off™
region of the sigmoid becomes blurred). The.method is fairly robust. to the noise value
solocted, aud the effect of noise level on performance makes intuitive sense.

A good solution results. when noise is added. hecause it prevents the network from
using a solution that uses non-saturated portions of the tri-level sigmoid. Such a solutian
would give a nearly randor. output and high error during training. The training algorithm
must find. a solution that works well despite the noise addition. This means the expected
value of the output must be well into the saturated regions to work consistently well, The
resilts approximate the optimal solution very well. and work when the tri-level sigmoids

are replaced with tri-level signums.

5.8 Other Uses of Noise in Related Problemns

Noise has been shown to be central ta the success of this new algorithm. While this par-
ticular _use of noise is new, artificiallv-injocted noise has been used successfully in previous
applications for control, neural networks, and-optimization.

In control and signal processing, quamization error results when an analog signal is
sampled digitally {with inevitably finite precision) by an A/D converter. This effect was
first studied extensively in the Ph.D. work of Bernard Widrow. and published in [66]. In
analyzing this phenorneron, the roundofl crror may. be tieated as a source of noise. While
this work has little direct bearing on the algorithm presented here. the presence of noise
and rcundof error in the same problem is interesting.

In control applications, it is common to add an artificial dicher signal to break the effects
of stiction. “This dither is usually chosen to cause a force just large enough to overcome the
static friction. and is input at a frequency high enough that it does not affect the rost of
the control system. Again. there is little direct connéctior: with the noisy -sigmoid training
algorithin. but it represents a arevious application of artificial noise injection it control.

In the heman vision system. thie imitation of a finite number of receptors inthe retina

is uvercotag by the artifivial addinon of a dither signal, Very small, high-frequency motions
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of the eve are used to allow people.to séc thin far-away objects that might otherwise go
unseen due.to the finite number-of receptors.

When training a neura] network with a limited set of training data, one.approach. to.
control the effect of overfitting is to duplicate the élements of the data set, and add different
amounts of noisé to each one, in an attempt to increase the effective size of the data, set.

Adding noise to-the weight updates has been tried, with-some success, to improve the
leatning $peed of neural-network training (34). This is a sirnilar concept to simulated anneal-
ing. the addition of & randomt element in the weight update rule whose maguitude decreases
exponentially. The idea in simulated annealing is to prevent the commaon optimization
problem of getting stuck in a local minimuni. M the magnitud¢ of the randont élement is
decreased slowly enough (i.e., the tinie constant approaches infinity). convergence to the
global optimum i$ guaranteed. This yradual reduction in temperature is similar to that
in a metallurgical annealing process - hence the nate. Simulated annealing is a common
algorithin iz optimization for systerns other than neural networks.

I genetic algorithms, species are evolved using two primary methods to go from one
generation to the next: (1) crossover, the combination of traits between cempetitively-
selected parents; and (2) mutzation. the addition of & random element in the uext-generation
chromosome.

While the above examples show that ~he concept of artificially-added noise for con:rol
and optimization problems is well-tested, the ust of noise presénted in this thesis - to
produce an accurate differentiable approximation to 4 DVF for gradient-based optimization

-~ is completely new.

5.9 Summary

This chapter Las described a new technique that allows backpiopagatioa learning to work
with systéms conf aining, discrete-valued functions. despite the discontinuity that exists be-
tweer. discrete values. The modification to backpropagation is very stnall, simply reguiring
sigmoidel approximation af the discrete valued functions, and the careful injection of noise
into the stuooth appioximating function on the forward sweep. The noise injoction is crit.cal
to ensuring th.at the noisy sigmoid behaves like a sighumn during training,.

Multi-laveted. networks of hard linciters cequite simpler processing hardwioe than do

multi-layered siginoid networks  Sigmaoid uetwotks are commonly used, however, due to
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e
their increased functionality as well as the lack of a.réliable trairing algorithm for signum
networks. Multi-layered signum networks have now been successfully trained using this
noise injection method ir two different applications, clearly demonstrating ifs usefulness in
this area. [
Application to & complex thruster-control problem, with implementation on a labora-
tory model of a free-flying space robot, has demonstrated the method’s realizability and
usefulness for on-off contral problems.
In each application, the training behavior in the presence of noise has been well under- ¢
stood. and the algorithm appeats to be relatively robust to.the amplitude of the injected
noise.
]
®
o
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Chapter 6

Experimental Demonstration of

Reconfiguration

Experim:enrs were performed on the mobile robot deseribed in Chapter 2 to verify the ap-
plicability of these neural network results. Position and attitude of the rabot base are
controlled while subject to multiple, large, possibly-destabilizing changes in thruster char-
acteristics. The plant is lirear and well-modelled, except for the actuators, which are on-off
thrusters that could have altered characteristics. An off-board vision system pravides high-
bandwidth position feedback, which is then digitally filtered and differentiated to provide
velocity feedback. On-board accelerometers and an angular-rate sensor are used to provide
hase-acceleration measurements used by the failure-detection and control-reconfiguration
capability. This chapter reviews the camplete contral systea, and presénts experimeéntal

results,

6.1 Systemn Overview

Figure 6.1 shows the averall systen block diagrain which was discussed initially in Chapter 3.
In this chapter, dach blnck will be described in detail.

The User issues motion command. with a mouse-based graphical user interfuce (GUI})
that runs en a Sun! workstation adjacent to the tobot. The user views an image of the
robot that is.updated witl real-time data from the Position Sensor described below, He

or she éan use the mouse tu drag a ghost imags of the robat to the desired final location,

‘Suh in a trademinrk of Sun Microsystems, lue
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Figure 6.1: Reconfigurable Control System - Block Diagram

This control system is based upon a conventiona! indirect adaptive controller, such
as a self-tuning regulator. Examjles of tht continuous-valued Fg., vector and
the corrésponding diserete-valued ' vector are shawn. The ID block represents
a recursive-least-squares identification of thruster strength and direction. ‘This
continually-updated model is passed to the neural network training block, shown
in detail in Figure 5.6. The continually-updated neural thruster mapper is capied
periodically into the active control loop.

adjusting its position and orientation. The mation is then initiated by clicking on a button
that is pact of the GUL

The Trajectory Generator reccives the current and desired position and velocity vee
tors and genarates & quintic-polyniomial trajectory between the two locations. A quintic-
polynomial racans there are six coefficients of a polynomial function of time. These pa-
rameéters are chosea to match the initia! and final position and velocity (four parameters)
and set acceleration to zefo at initial and final times (the two remaining parameters)..The
Qurition of the slew is minimized automatically while not exceeding the pre-defincd accel
eration litnits (corresponding to the limits in actuation). The result is a time history of

Cosited stités. X ., cONSSUNE Of [Ldeas Yiese Cdose Tdeas Wdesr Cdes)e

The PD Coutroller tukes the desired state, Xies, from the Trajectory Genera- ..

tor. and the measured state, X, from the Position Sensor. The translational propot-
tional and derivative gains are 32.5 N/m and 90 N/(14/s), resulting in closed loop paoles
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ats = ~0.65 £ 0.27 (neglecting effects of the on-off actuators). The output of this
component is a.continuous-valued desired force vector, Fyes = [Fry,s Fygr Twae,)s SUch as
[6.9N,-1.3 N, 0.4 N-m],

The Thruster Mapper takes the desired force vector, Fge., and produces the thruster
vector, 7', that causes the thrusters to open or close. An FCA network is used to implement
the thruster mapper. Like the rest of the low-level control loop, it is written in the C
programniing language and executed on a Motorola® 68040 processor (MVME 167) on
the robot. The real-time.control svstem was developed with ControlShell? development
software and the VxWorks? aperating system. Details of the network are déescribed below.
The signal flow of the thruster-mapper component is shown in Figure 8.2. The final out put
is the binary eight-elemens vector of thrusters to fire, T = [Ty 12 13 1y Ts Tg 17 13).

Thruster Mapper
periodically ¢opied to robot
from. training process

| |
[ THRUSTER MAPPER

Xern

i Module <

g Ehﬁqnﬁr&ll]iﬁggif_@_ A

Te: dte

FireCinenly

Figure 6.2:- Taruster Mapper - Signal Flow

The signal flow . of the “thruster-mapper” component shown in Figure 6 1 is pre-
sented. The mapper produces # T vector based upon the desired force, but
this signal may be changed by the “Fire Control Module” during the identification
process. A list of thrusters ta excite, Legee, i provided by the: “1D” camponent.
A FireOncOnly signal is also used to sitnplify the ide=atification by limiting firing
(o orié thruster at a time. Both of these ID-relaled functions (may Le oveér-ridden if
the tracking errot, Xere, 1s too high. ‘The parametefs (neural network weighls) that
define the futiction ithplemented by the thruster mapper are penindieally copied
from the neural-network training proceéss

‘ConttolShell is a trademark of Beal-Time Innovations, Inc.
‘N Works is i tradeiiack of Wind River Systems I,
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The Robot has & mass of 70 kg, floats nearly frictionlessly on thegranite table, has
eight thrusters, cach. nominally preducing 1 Newton of thrust. Since control of the rabot
manipulators was 1ot relevant to this research, the arms are commanded to maintain a fixed
position at all times. This involves RVDT sensors, an analog pre-filtering and differentiating
circuit, A/D converters, a PD controller for each of the four joints, D/A convertérs, motor
driver boards, and finally the brushless DC motors and cable drive system that actuate
the arms. The arm endpoints are equipped with pneumatic plungers, allowing the robot to
capture a frec-floating target object.

The Position Sensor is a pair of CCD cameras mounted to the ceiling above the
robot. Two cameras are required to cover. the total surface area of the 2.74 x 3.68 meter
(9 x -12 foot) granite table, The cameras detect a pattern of LEDs mounted to the top
of the robot. A custom vision processing board processes the camera outpui, and produces
position information at a 60 Hz update rate that is accurate to better than 1 mm. This
[z. ¥, ¥] vector is digitally filtered and differenced to produce a velouity vector. The
pracessing is performed off-board and then communicated back to the robot via a wireless
Ethernet data/communications link.

The Sample Rate for the low-level control loop was chosen to be 10 Hz. This is
more thaa an order of magnitude faster than the PD controller bandwidth, and is slow
cniough to allow transient acceleration effects to die out, leading to the accurate acceleration
information needed for reconfiguration. If reconfiguration is not required, the sample rate
can be increased to 60) Hz. Sawnpling faster than that produces no benefit, since the vision
system operates at 60 Mz, aud the thruster bandwidth is approximately 30 Hz,

Summary of the signal flow in the low-level control loop: LEDs or: tcp of the
robot emit infrared light. CCD cameras on the ceilitg teceive the light, and send the sigral
via a coaxial cable to the custown vision processing board ruounted on a fixed rack adjacent
to the granite table. The “pointgrabber™ vision board scans the image for bright pixels.
When the known pattetn of LEDs is lacated, the vision board calenlates the crientation and
geometric center of the robot. Velocity is also calculated on the vision toad by digitally
filtering the position information. The G-element robot state vector is broadcast to the
robot at a 60 11z update rate (and less than 3¢ ms total time delay) over the Motorola
Altair wireless Ethernet systern. The robot then sends this information back 1o the user
interface running on a Sun workstation, The ou-board microprocessor takes the state vector

and uses the PD contraller 1o calculate the desited foree, cof vert tu robot coordinates,

I
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and uses the Thruster Mapper to calculate the thruster vector (e.g. 101000 0 1]).
This vector is sent over the Vi Z hackplane to the digital I/O board, which then controls
the opening and closing of the eight solenoid valves. This releases.air. from the 10C psi
reservair out through the converging-divérging nozzles to produce one Newton of thrust per
thruster.

The Acceleration Sensors are described in detail in Chapter 2. Two accelerometers
are mounted on the basc orthegonal to one another, along with an angular-rate sensor.
The acceleration signals and angular-rate signal are pre-filtered to remové the effects of
extraneods vibrations. The filtered signals pass through an A/D converter, and then through
the WME backplane to the microprocessor. The base translational acceleration vector is
derived by subtracting centrifugal accelerations (calculated using angular-rate information)
and converting to the robot frame. The angular-acceleration signal is obtained by digitally
filcering and differencing the angular-rate signal. The [¥, §, 4] vector of the rohot base is
thke output of this compornent, as shown in Figure 6.3.

ACCELERATION SENSORS

Iigure 6.3: Acceleration Sensors - Signal Flow

The signal flow of the “accelcration sénsers” component shown in Figure 6.1 is
presented. The accelerometers are filtered with analog and digital filters to produce
the Accel #1 and #2 signials. The angulai-rate sensor signal is ssmilarly filtered,
with tlie additional step of a digital difference, which produces 1 as well as . v is
output directly, while ¢ is used to cothipeitsate for centrifugal accelerations measuved
by the accelerometers. The acceleration signais ase then rotationally transformed
fo align with the z and y coordinates of the robo!. When the angular-rste sensor
vaturates, angular rate and acceleration derived from the everhead vision system
are used, ss mdicated by the lagical switches.

The ID component identifies the chatacteristics for each of the eight thrusters This is

described in detail helow. At a simple level, it takes in the acceleration vector and thruster
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vector, and performs a recursive linesr i to identify the thruster parameteérs, The
niore-complicated factors, such as failo~ .~ and thruster excitation, are described
below, and summarized in Figure 6.9. A ....ur tegression may be uscd here, since the
forward model of the.thrusters is lincar, c.g. firing thruster ) may produce -1.03 N in the
x direction, 0.07 N in v, and 0.137 N-m in 4. The result is a 24-element matrix, containing
the thrust produced by each of the eight thrusters in each of the three degrees of freedom.
This is the “robot model” indicated in Figure 6.1.

Thyuster Mapper
periodically copied Model updates
to control loop on robat; from ID process
P

NN TRAIN

Fdesired

Figure 6.4: Neural-Network Training -~ Signal Flow

The signal flow of the “NN train” component shown in Figure 6.1 is presented. The
model used in training is updated by the ID process, and the neural-network thruster
wmapper developed here is copied periodically-to the thruster mapper running or the
robot. The algerithm used to ac'apt the neural network based on the error signal is
shown in Figure 5.6.

The NN train component s responsible far rodesigning the thruster mapper to account
for changes in the robot model. It waits until a major change-is detected, calculates a
linear mapper, and implements it on the rohot using the FCA, described in Chapter 1.
When smaller changes occur {as the 1) process converges), the model used for training
is updated. If farther major changes are detected, the network [s reinitielized to a newly-
calculated linear mapper. Indirect training is performed using the madified backpropagation
algorithin described in Chapter 5. The thruster. mapper being triined is copied periodically
to the thruster mapper ranning, on the 10bot, The network is grown gradually, resulting. in
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a fast initial learning rate. The détails of the training are presented below, and summarized
graphically in Figure.6.4.

Summary of the signal dow in the adaptive system: Accolerometers and an
angular-rate sensor measure motion. of the robot base. The raw signals are prefiltered
on-board, pass through an A/D _converter ta the microprocessor, where the dynamics are
accounted for, and the base acceleration vector is computed. This signal is transmitted
using the wireless Ethernet to a Sun workstation that is running the ID process. The ID
process forms the robot model and transmits updates to the NN fraining process running
on another Sun workstation. The updated neural-network thruster mapper is copied
periodically té e robot via the wireless Lthernet, where it is substituted for the thruster
mapper running in the control loop.

6.2 Trajectory-Following Perforimance

Before the reconfiguration capabilities ate ptesented, trajectory-following performance with
al! thrusters working is discussed. This secvés two purposes, First, it demonstrates that the
base-control strategy of separating the thruster-control system into a control component,
and & thruster-mapping component is valid. Second, it demonstrates that a noural-network
ertalation of the search-based thruster mapper (which is optimal) can provide near-aptimal
performance.

When evaluating performance, the effects of the on-off actuators should be cansidered.
Due to the tontrol structure, PD-control gains, and thruster-mapping_cost function selevted,
a deadband exists within which the thrusters will not.fire, even with an cptimal thruster
mapper. While the size of this deadband is difficult to characterize due .%o the thruster
coupling effects, the maxinmum static deadbzud (assuming zero velocity er-or and error in
one degree-of frecdom only) is approximately 2.9 cm ju translation and 10.6° in yaw angle

(with the nominal thruster cenfiguration).

6.2.1 Trajectory-Following Performance: One Degree of Freedom

Figure 6.5 shows thetrajoctory - following performance fot a single-degree-of-frecdom 11a-
neuver. The robot hase pnsitian is cofrmended to follow a quintic.polynomial trajectory in
the +r direction._Lhe trajectory parameters are chosen to achiove the desived final position

while setting initzal aud final velocity and acesleratich to 2era, Decause of this. a couple
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®
of seconds pass before the thrusters fire, even though the trajectory begins at t=0. The
duration of the manéuver is set automatically, by keeping the peak acceleration within the
actuation Lmits of the rohot. Tn this case, the 1-meter slew took 20 seconds.
Single-axis Trajectory Following
1 t 1
i § TR
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Féo.é - od
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Figure 6.5: Single-Degree-of-Freedom Trajectory Following, Experimental Re- o
sults
Trajectory-following petrformance is plotted for a quintic-polyriomial trajectory
of length 1 meter ant! duration 20 seconds, in the +& direction. The nominal
thruster configuration is present.. An FCA metwork with § hidden ncurons pro-
vicles trajectory-following performance comparabie to that of the opfimal thiuster —_—
wapper, which i implemented via exhaustive search.
The control systein used is the one described above, excapt that o adaptation is re-.
quired. Twa different thruster mappers are used: a neural-network mapper implemented Py
with an FCA network with 5 hidden neutons; and an optimal thruster mapper. ithplemented
o

I
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via exhaustive search. Both mappers are aided by symmetries (as- described in Chapter 2).
Alihough the necral mapper is sub-aptimal (mapping performance on a set of test data
resulted in average force sirors.3.5% greater than the optimal mapper), the trajectory-
tracking performance is comparable. Due to the presence of feedback, the 3.5% mapping
error is not signific2ut, considering the other disturbing factors, such as imperfect thruster

charactaristics (steady-staie and transient), sensor noise, and deadband. -
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Figure 8.6: Multiple-Degree-of-Freedom Trajectary Following

The initia!, middle, and final positions are ilustrated for & multi-coordinate ma-
neuver (r, y, v) Quintic-polynomial trajectaries are followed sitnultancously in
each of the three degrees of freedom. 1he position of the rabot’s geometric cénter
obtained using the FCA mapper is also plotted (hesvy black line).

6.2.2 Trajectory-Following Performance: Three Degrees of Freedom

For the multi-cooidinate maneuver ([z. y. ¥}) shown in Figure 6.6, good tracking is obtained
again from both optimal and neusal-retwork thruster-mapping components, I this 22

seconid:long trajestory, the rohot simultaneously.translates 1 metet in the 42 direction,

S A e e — g co— = S5 o B o Preon
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1 meter in the +y direction, and 180° in.the +1 direction. The position of the robot’s
geometric center is plotted in this figure, Quintic-polynomiial trajectories are used for each
degree of freedom. Each is executed simultanesusly, with the peak acceleration for each
degree of freedom limited to the physical actvation limits. 9
Trajéctory Following, FCA-Neural--Network Thruster Mapper
4 T T L 1 - !
-g oy JDIF"\.v !
5 2 - [{ . ~~‘-‘:\ e | . Ve e ' o
I, T e WL AN 1\ = e
X e . ‘"‘*Mﬁ‘vﬁfi =7, -
B 2} | — x Position Error S -
E - -y Position Error
S-4r . . -
g -~ - yaw Angle Error . °
-6 = ey e 1 e 1 L
0 s 10 15 20 25 30
time [sceonds)
Trajecrory Following, Optimal Thruster Mapper
4 =Y . T Y T . S
g 2k /btl .A.\‘”“.\.‘A : . . BRI . . Do e .
DU e
g gl""" . \:.. NP o
3 —— o’
5 T -
g -2 |~=—= x Position Error N 0! -
£ - -y Position Error ’ “*‘\ W ®
E = == yaw Angle Error G T
‘_6 I 1 "y —_
0 5 10 13 2(} 25 30 .
time [seconds]
®
Figure 6.7: Multiple-Degree-of- Freedorni Trajectory Following, Experimental Re.
gults
Trajestory-following crrot for the multi-cooidinate nmancuver lustrated in Fig-
ure 6.6 is plotted fur cach of the thrée cocrdinates, (z, y, v). The performmnce of
the FCA Mapper with § hidden neuroas is excellent, and is comparable to that of [ )]
the neapper impleraented witl exhaustive scatch (“Optimal Thruster Mapper”).
Trz.jectoty-following errors for this multi-courdinate maneuver are plotted in Figure 6.7,
providing a cotnparizon of the neural and optimal tlrustet mappets.  This experiment ®
used the same con‘rollers used for the single-degree-of-frerdom maneuver desce’bed above,
[
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Again, the performance i« excéllent, and comparable results are obtained from the neural .

and optimal mappers.

6.2.3 Trajectory-Following Performance: Summary

This preliminary experiment has verified the applicability of the non-adaptive portions of
the neural network control systém. The neural mapper was shown to provide trajectory-
following performance coraparable to the optimal mapper, which was implemented by ex-
haustive search. As discussed earlicr, the advantages of the aeural-network appreach do
not apply strongly in this application until there is the requirement for reconfigurability.

6.3 Control Reconfiguration Problem Definition

Figurc £.8 shows the thruster layout in the nominal configuration as well as an exawmple of
a dramatically-failed configuration. The magnitude and direction of each thrusteér is showu,
Nominally, each thruster produces 1 Newton of force, directed as shown. The failures wert
produced by mechanically changing the thrusters, Failures include: half-strength (@),
plugged completely (®). angled at 45%(Q® and ®). and angled at 90°(® and @). The
90° failure modes place high demands on the control-réconfiguration system, since they
destabilize the robot (charnging the direction of torque results in positive feedback!).
Requirements for the reconfigurable control system include:

1. The robot is not infurmed of the nature of these failures, or even that a failure has
occurred. The adaptive system must first detect the failure(s), then identify the
new thruster chavacteristics, and finally _train and implemeént a noew neural-network

thruster mapper thas accotnts for these changes.,

2. Control must be maintained at all times, bLut artificial excitation is allowed when
pusition errors are sinall, This requirement kaeps the robot within the bounds of the
workspace (i.e. on the tahle); and allows it to carry on with its mission during the
réconfignration. For example, in this case, the robot can be comnmaiided tu fove

throughout the workspace during reconfiguration,

3. The entire adaptive system, inclnding ID_and re-training, is to be autonomous, re

quiring no user intervention .at all.
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Nominal Configuration After Multiple Failures

e
® U@
Figute 6.8: Example Failure Made °
Magnitude and direction of sach of the eight thrusters is shown. Thruster failures
were simulated mechanically with weaker thrusters and 9(° and 45° elbows. Some
of the ellws destabilize the robot by changing the sign of thrust in the ¢ direction,
®

Six out of eight thrusters have failed in the case presented here. There is no theoretical
limit to the number or type of failure that can be identified and be accounted for by the
reconfigurahle control system. However, there is a lntitation if the controllability of the
1obot is impacted. For example, if both thrusters on the front of the robot (@ and ®. @
as lzbelled in Figure 6.8) had failed completely, and no ather thrusters contributed force
in that dire¢tion (=z), there would be no actuation authority in the —ua direction. If it
were necessary to accommodate failures like this, a higher level process (perhaps part of
the trajectory generalor) could command the robot to rotate, bringing working thrustérs P
in line to provide the requized thrust. In the example failure 1node shiown in Figure G.8,
there is sufficienit actuatian ausharity in plus and minus directions for all three degrées of
freedomn, so this issué is not ve< addfessed here.
To surniharize, the basic reconfiguration strategy is to first detect the failure(s), then PN
identify the new thruster characteristics, and finally train and impleniént a new neurad-
network thraster mapaoer. The structure of the control sysfem is surnmarized in Figure 6.1
Itunning the adaptive process (neural-network training) in parallel with the identification
process leads to stabilization within séconds, and canses the rohot tn he webi-controlled °

during tlie identification,

P e e maid el s i sbe o ea el e el . P . N _ . _ L
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6.4 Identification of Failures

Before reconfiguration ¢an occur, the failurés mus* be identified. The control system is not
informed of the number or type of failures beforehand. It must detect, and subsequently
identify, each of the failed thrusters. Failure detection and system identification are closely
related in this implementation, so they are presented together here. The signal flow of the
identification process is shown in Figure.6.9.
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Figure 6.9: Identification Process - Signal Flow

Inputs arc the thruster commands and acceélération signals, sampleid from the real-
time systeni at 10 Hz. Thé primaty outpit is the model of thruster charasteristics,
a 3 » 8 matrix containing the forward mupping from thrusters to accelcrations.
Additional outputs, Tisene and FireOneOuly, ate used 1 the control loup as part
of the artificial excitation process

6.4.1 Identification Summary

The task is to take in accelesation signals, (. §, ), and thruster commands, and form &
madeél of the strength and direction of each thruster, Since this is a purely linear relationship,
there is no need for a neural network, und a linear-systems approach works well. When the
thiuster model is found to deviate from the nominal, o thruster faildre is “suspecied.” ‘The
thruster in quéstion will be excited artificislly to ubtaia more information abour it. speecing
up the idertfication procass. When a certain level of confidence is reached and the new

characteristics of tie2 suspected thiuster are coifirmed. the artificial excitation is turned
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off. Throughout-the identification, model updates are sent to the neural network training
component. This procedure, explained here for oue thruster, runs in paralle! for each of the
eight thrusters. .

There are a number of complicating factors for the system identification process: multi-
ple thrusters may be.fired simultaneously; the acceleration signals are corrupted by extra-
neous miechanical vibrations of the.robot.in the frequency range of interest; the response
time of the thrusters is on the oider of the sample period: and variations in the reservoir
préssure during the firing of multiple thrusters affects the thrust output. Thése problems
are addressed by filtering, reduction of the sample rate to 10 Hz, and design of the system
ID process (e.g. waiting for a certain confidence level to be reached - i.e. collecting enough
data - before declaring a thruster failure)

At the heart of the identification process are two recursive linear-regression processes
running in parallel, incorporating acceleration and thruster signals as they become availahle,
Fach linear regression yields a 24-parameter model containing the #,y, and ¢ acceleration
associated with each of the eight thrusters.

8.4.2 Jailure Detection

The first recursive linear-regression process ic used primarily to detect when a failure las
occurrad for each thruster. This “Failure.-Detection” process has a weighting factor that
causes it to focus on the most recent few seconds of data (the weighting parameter decays
exponentially in time - a “forgetting factor™). The time constant of the exponential decay
was chosen to allow quick response to a failure, but still allowing enough data collection to
preent-premature failure declaration.

This process, shown in Figure 6.9, is initialized with 2 model of the-nominal. tltruster
veafigurancr: however, due to-the forgetting-factor, the model can change. quickly based
upon réw—data. The recursive process propagates a iodel (3 % 8 macrix répresenting the
best esilimate of thé accelerztion resultitg from each thrustér) arnd covariance-matrix (8 » 8
matix representing the amuount of information ¢ollected fof each of the cight thrusters).

Leery titne a thruster is fired, the ID process collécts more information abont that
thruster. leading to a higher level of confidence in the estimate of the model parameters for
that thruster, A “confidence factor” is calculated by taking the diagenal.terms from the
iaverse-of the ¢ovariance mhatsix. 17+ to the forgetting fector, the confidefice factor does

eot tise monntonicaily - it will fall if the thruster is no’ fired for some time,
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The model generated is compared with an “Accepted Model.” The “Accepted Madel”
is.the overall best estimate of thruster.characteristics, and is.the one sent to the neural-
network-training process. It is set initially to correspond to the nominal thruster configu-
ration, but may be updated by éither of the two recursive linear-regression processes.

If an error in the model is detected -(i.e. difference between identified .and accepted
models exceeds a certain threshold) for one or more thrustérs, and the confidence level for
the thruster(s) is high enougl, a suspected thruster failure is declared. This decision process
is shown as the LOGIC ELEMENT in Figure 6.9. When this condition is met, three things
happen:

1. The suspected thruster is added to the “List of Suspeats.”

2. A reset signal is sent to the “Model-Building” Recursive Linear-Regression process.
For the newly-suspected thruster(s) only, all prior informiation is to be eérased. This
is achieved by inverting tle covatiance matrix, zeroing the row and column corre-
sponding, o each newly-suspected thruster, inverting this matrix (setting the diagonal
élement to a small number so the inversion is possible), and setting the covariance
matrix equal to this quantity. This hias the effect of elimivating auy prior information
concerning the newly-suspected thruster, while leaving the rest of the model intact.

3. The identified uiodel (for the newly-suspected thruster(s) anly) is copied to the “Ac-
cepted Model.,” This is shown by the closing of the switch in Figure 6.9. This new
“Accepted Madel” it then sent imniediately to the neural-networX training process.
There, a linear appreximate solution is-calculated immediatelyd, infused into an FCA
network and copied to the robot. The result is a near-instantancous stabilization of
the rcbot, atice the thruster failure lias been detectad,

Quicé a thruster is suspected, it will not be labelled ag a suspect again until the adap-
tation process is reset. It will remain on the list of suspects until it is reritoved by the
“Model-Building” Recursive Linear-Regression proiess.

{The a priorddintar solistion used heie was fobned by axsuming that the thrastees ire cdpable of continuous.
valded thrust output (a lindarized version of this probtérn). The solution is an K x 3 pseudo-iuverse of the
3 » 8 thateix whizh tnaps thracters to hase forcen, £, Some simple adjustineats aie then made to acceunt
for the onu-sided aspéct of the thirustees (i ¢ they can not produce negiitise thrust ).
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6.4.3 System Identification

The second recursive linear-regression process is used to build the model of the thrusters
that it used_for. neural-network training. This “Maodel-Building” protess does not have a
forgetting factor - it incorporates all of the inforniation equally, so the result is exactly the
same as if a single batch-least-squares identification were run using all of the. data.

This model is meant to be stadle, basically chauging only after a suspected thraster has
been flagged. For this reason, it is initjalized to the nominal model with a high level of
confidence, and therefore does not vary significantly with random fluctuations in the data.
However, when a thruster is flagged as heing suspected by the “Failure-Detection™ process,
all information about that thruster is eliminated, as described above. Information about
the other thrusters remains unchanged. New information about the suspected thruster is
thén incorporated into the ID process, and it reacts quickly to the new situation due 1o the
climination of old infarmation.

The model and cuvariance matrices are updated recursively as new data comes in, as
with the “Failure-Detection” Lincar Regression. Since there is no forgetting factor, the
confidence factor rises monntonically. When certain levels of confidence are reached and
errer criteria are met, the “Accepted Model™ is updated. When confidence reaches a high
level, the thruster(s) in question will be reruoved from the “List of Suspects.”

During the time between first suspicion and final confirmation, the thruster in question
is excited artificially, as described below,

6.4.4 Artificial Excitation

When a thruster is suspected of having failed, an artificial-exéitation method will cause that
thruster to fire more than it no:mally would, allowing for raore information to be collected,
and ultimately. expediting idenitification. Uhe excitation is achieved with two basi¢ methods:
(1).when_position-control errors are “small.” 2 thruster may be fited open-loop foi: a brief
period of time (until the thruster characteristics aré identified or the errors are no longer
“small;” () when position-cantrol errors are “mediunt,” the tlirusters that are targeted for
excitation are used exclusively for clesed-loop control. When when position-contiol errors
become “lurge,” artificial excitation is suspended until the errofs_ara feduced.

The excitation is controlled by two signils sent from the identification procoss to the

robot:

- s —— e pmn s s
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1. A list containing which, if any, of the cight thrusters should be subjected to artificial
excitation: Tezeite- -

2. A TRUE/FALSLE command indicating whether the robat should limit itself to firing
one thruster at a time: FereQneOnly.

List of Suspects

The “List of Suspects” component in Figure 6.9 keeps track of the suspected thrusters.
Thrusters aré¢ added to the list by the “Failure-Detection™ comporent, and then removed by
the “Model-Building” compenent once their new characteristics have been confirmed (and
possibly a confirmation of ne change, if the initial failure-detection signal was etroneous).

FireOneQuly

If the “List of Suspeets” contains any thrusters, FireOneQOnly is set to be TRUE. Firing
of multiple thrusters complicates the identification process, and identification accuracy will
be improved if firing is limited to one thruster at a time. Howeéver, keeping the tracking
error low is a priority. and may override this limnitation. The fiow of signals is summarized
in Figure 6.2.

List of Thrusters to Excite

When suspécted thrusters exist, they are copied directly to the List of Thrasters to Excite.
and are sent to the robot as T, .., shown in Figures 6.2 and 6.9 When all suspected
thrusters have been clearéd by the “Model-Building” process, any thrusters that have not
yet been identified to a-high level of confidence are added 10 T'epeige. L'he logic behind this
is that if some failures have heen detected already. then whatover caused them (such as a
plutibing failure, mirro-meteofite impact. or intentional damage imparted by a graduate
student) may have caused other as-yet-undeiected failures, and identifying them quickly is
in:portaunt.

Thruster excitation will be attetipted as long as af least onhe thruster remains in Zezoire.
If the oot position errar is “large,” no excitation will be used - the robot is most concerned .
with maintaifing control. If the position errar.is “medium,” and FireOneQnly is set to be
TRUE, the mohot will fireexactly one thruster. The thruster is chusen by finding the theuster

frot thusein Zopeue whose currently-estimated characteristics best matches the desired fofce
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vector. In this middle region, artificial excitation takes place, but also serves to control the
robot. If the position error is “small,” the robot will fire exactly one thruster. The thruster
is.chosen by finding the.thrustér from Ter-ire Whose curreatly-estimated characteristics.most
differ from the nominal. Some hysteresis is added to prevent chatter across small/medium
and medium/large boundaries.

This artificial excitation method leads to quick identification. For the ¢asé presented
here, with 6 of 8 thrusters failed, the ID process consistently takes less than 60 seconds
from when the first thruster js fired until the last thruster is identified to a high level of
confidence,

A reconfiguration examp.e, including error and thruster-firing plots, is presented at the
end of this chapter. The effocts of the ID process and neural-network training will be

presented there.

6.5 Neural-Network Training

The system identification ptocess can be completed less than 60 seconds, due to the artificial
excitation, However, the control systern requirements do not allow the system to remain
unstable for that length of time (the size of the granite table is the limiting factor). Use
of linear approximate solutions. implemented via the FCA provide stability, but with a low
level of performance. Running the newral-network training process in parallel with the
I process results in higher- performance control, as the nonlinear capabilities of the rsural
network optimize beyond the starting point of the linear approximation. The neural-network
training process is showr in Figures 3.6 and 6.4,

The neural-network training is not activated until the first thruster failure is detected.
From this point ~n, it is running cantinucusly, using the most-recent thruster model provided
by the 11 process. When a significant change is detected, such as the total loss of a
thruster, a lingar solution is calculated, and the network starts fruni.scratcl, with the linear
solution input via the FCA. When small chianges are détected, sucl as the convergence of
an identification ofr the new final value, learning is continited with the updaced model.

The performance of the neurzl-networlt thruster mapper is evaluated periodically on
a “test set” of thruster-mapping input-output patterns. If the performance (a weigthtod
coinbination of force matching and.gas conservation) is betrer than the tes-set performaiee
of the thruster mapper corréntly on the robat. it will be copied to thé fobot. The copving is
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performed by sending the FCA weight matrix (asin Figure 4.2) over the wireléss Ethernet.
The neural-network function runuing on the robot swips in these new parameters, resulting
in an instantaneous change in the functionality of the thruster mapper.

6.6 Rapid Reconfiguration

One of the major issues in neural ¢ontrol is speed of learning. This is important in thé robot
application due to the goal of stabilizing ar unstable system within a limited workspace.
Rapid reconfiguration has been achieved here, and it is due to & combination of two aspects
of the learning process: first due to the FCA, and second due to the growing of the network.

1. The I'CA helps before training begins by itnmediately giving the network a good linear
solution that stakbilizes the robot.

N

The neural network is grown during training. This refers to starting with a few hidden
neurons and gradually adding new ones as training progresses. With few hidden
neurons, very-quick learning takes place, since fewer computations are required, and
fewer training patterns are required (1o avoid overfitting). A¢ more hidden neurons
arc added, the learning rate slows down, but the greater functionality can be used to
further cptimize performance.

The retwork begins with § inputs, & hidden neurons, and % outputs, and gradually
grows to 30 or more hidden neurons as training progresses. New hidden neurens are
added when petfermance hogins to platéau. To prevent overfitling, the training-set
sice is grown proportionally with the number of hidden neurons. With 1his arrarge-
mentt, a mapping with about 30% error above optimal results in 30 seconds, 20%
above optimal withir. 60 scconds. and 105 above optimal® swithin 300 seconds, run-
ning ofi 8 Sun Hparc 10 workstation. As more hidden newrons are added, the network

petformance approaches optinality, but ar the expoense of slowet training.

"Due to the use of discrete-valued actuatars, there 1s it always u foriv crrar vettor The errcr valué
reported here indicates that the average raagmitude of the force errof vector is 1.10 tunes the magtatade
achievable with a ¢ exbiaustive srag-h




106 CHAPTER 6. EXPERfMENTAL DEMONSITRATION QF RECONFIGURATION

s

Y
N

N unstable 1obo 3

-+ begins spifining - }'\"' """ ' L '
wul of conzrol N : i}
t : N

Six thrusaters are
severoly misconfigured,
as {n figure 6.6,
and above

ervor {cm,dep)

U O AU t < 0, robst within
I : v deadband, no thirusters
/i ' firing

| == xerror
@ t = O, amall disturbance

:_- i::‘:r applied to robot.

A

—_—

40 50 60 0 80
ume [sec] mapper loaded,
deural-network training under way training begins

training with knowledge of all fa.ilure:: @ t « 36, sixth and final
artificial excitation, ID - thruster failure

confirmed to high leve!
. L- ! i : of confidence

= —- — : { @) ¢ = 48, ol thruster

u i : : characteristics

i confirmed

@ t w4, thrusters 4,56
suspected, stabilizing

t

t ~ =, neural-netwark
optimization contihues

-

© C)Thrustaris o
: candidate for
ﬂ artificial rxcitation

I i

{l Thruster failurs ix
suspected, but not

L L

10 20 an
time [sec)

: l
Ll Aamsi

yet: confirmed

60 70

80 Il Thruster firing

Figure 6.10: Experimeéntal Results of Reconfiguration

[#, w. W) position errors (desited - actial) are plotted. during autonomous réconfiguration of the
control systen in response to thé six severe thruster failures shown in Iigure 5.8, Static control
deadband 1s approximately £ 3 em in translation and £ [1° in rotation. The robot begins at
rest within the deadband, 1s disturbed at t = 0, stabilizes itself within 1 seconds, and completes
dentification (aided by artificial excitation) after 48 secontds. The neural-network thruster mapper
continues to optinize after the identification s conplete. Thruster signals are shawn in lower plat.
Bldck rectangdlar regions wdicate potiods of thiuster firing. Darkly-shuded regions indicate the
time during which the thruster was susprected. In addition to artificial excitation of the suspected
thzusters, excitation of un-suspected hirustirs is used to expedite_the_idéntification process. ‘These
periods sre indiczted by the hghtlyv-shaded srgrons

_ P
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6.7 Experimental Results of Reconfiguration

The previons sections have provided a description. of the structure of the contral system
used for reconfiguration, as well as detailed descriptions of several of the key components..
In this section, experimental data from a typical reconfiguration to recover from multiple
destabilizing thruster failures is presented. Figure 6.10 plots the position ersors (desired -
actual) and thruster-firing histories during the reconfiguration.

The thrusters have been misconfigured severely, as in Figure 6.8, Before t = 0, the
complete control system is active, but no thrusters fire, since the robot is drifting within
the control deadband. With no thrusters firing, the thruster failures do not cause probhlems.
but they also cannot be detected.

At ¢t = 0 seconds, a small disturbance is applied to the robot. One of the first thrusters
to fire is thruster @ (shown in Figure 6.8 and the upper right corner of Figure 6.10),
which is destabilizing in yaw, causing the robot to begin spinning out of control. The error
signals in all degrees of freedom. grow significantly following the disturbance, as seen in
Figure 6.10. The rohot spins to its left, causing Yactuar 10 increase and Y, ror to decrease
(Werrar 5= Vdesired =~ Wactuat)- The lower half of Figure 6.10 shows how thrusters @ (§ and
® stay on almost continucusly (indicated by the black regicns) due to the instability.

During this time (f = 0 ~ 4 seconds), the “Failure-Detection™ process, shown in Fig-
uré 6.9, has becn collecting data. At ? = 4 seconds it declares failures in thrusters @ @
aud ®. This triggers a series of events, all occuring at t = 4 seconds:

1. The “Accepted Model” is updated with the few parameter estimates for thrusters
@ ® and (®. as identified by the “Failure-Detection™ process. The exponertially-
forgetting lincar regression weights recent data more heavily than old data, so the
model built between ¢ = 0 and t = 4 may be used effectively as a crude first approxi-
mation of the characteristics of thrusters @ (3 and ®.

2. The new “Accepled Madel™ is sent_to the neural-network-training process, where a

linear solution is calculated iinmediately and implemented on the robot in the form ..

of an I'C:A uetwork. The model at this point is just a rough estimate, and the linear
controller is far from optimal, yet these methods combine to result in the immediate

stabilization of the fobadt,
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3. The neural-network-training process begins now, at ¢ = 4 seconds, using the above.
mentioned lincar solution as a starting point. for training a new thruster mapper to
accommodate the updated model. This process continues indefinitely: model updates
are received from the identification process and incorporated into the training: if the PY
change in model is small (such as the change in force estimaté from 1.03 N to 0.95
N), training continues; if the change is significant (such as the initial detection ofa
tnajor failure), the training is re-started with the linear solution as a starting point.

4. Thrusters @ @ and @ arc added to the “List of Suspects” (shown in Figure 6.9), as L
indicated by the darkly-shaded areas for thrusters @ (® and ® in Figure 6.10.

5. The Tecite vector is set to {4 5 6] and sent to the robat, along with a TRUE
FireOneQnly signal. As discussed earlier in this chapter, a TRUE FireOneOnly °
signal means that the controller will fire only one thruster at a time (to obtain a more-
direct identification), unless the regulation error becomes excessive. Furthermore, it
will select thrusters to fire from only those that are listed in the Ty e vector, again,
unless the regulation error hecomes excessive, This will expedite the identification of PY
these newly-suspected thrusters. The effect of these actions is immediately apparent
in Figure 6.10: after ¢ = 4 seconds, only one thruster is fired at a time, and the firing
of thrusters @ @ and @ is favorad.

6. The “Model-Building” process, shown in Figure 6.9, is reset for thrusters @ ® and ®
®. That is, all information about thrusters @ @ and @ in this madel is immediately
and completely eliminated, while the information about thrusters @ @ @ @ and ®
remain unaltered. Since a dratnatic failure has been detected for thrusters & @ and
(®, these models are built from serateh, . beginning at t = 4 seconds. L ]

Each of the 6 items mentioned above occurred at ¢ = 4 seconds.

The cumulative éffect of these events at t = 4 is immediate and dramatic. The robot is R
stabilized immediately, as seen by the leveling off of position crrors. Thiis rapid stabilization ®
is made possible by the quick estimation of what thrusters ® @ and @® are doing. and the
subsequent linear control design and implementation as an FCA-neural-netwark thruster
mapper on the robot. The orrofs can be seen to increase initially due to the momentum of
the robot, and it tiakes a few seconds for them to turn aroand. dve to the limitation to firing °
of one thrustef at a time, but the restaration of stability is clear. The initial identification
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is so fast in this.case that errars never grew to be “large.” If they had. the restrictiof to
firing one thruster at a time would have been lifted until the errors wete reduced to lowet

levels.

At t = 6 seconds, thrustér (@ is suspected and the entire process described above is
tepeated: 2 linear mapper is calculated ard implemented via FCA; Tezcire becomes {24 5 6]:
and the “Modcl-Building” process is reset for thruster . The position-error results are

less dramatic, as the failure of thruster @) is not destabilizing.

At t = 8 scconds, the “Model-Building” process reaches a sufficient confidence value . .

for its estimate of thruster (). 1t updates the “Accepted Model” and removes thruster @
from the “List of Suspacts” and then frum T.zge.. This is indicated on the plot by the
termination of the darkly-shaded region for thruster 3. It stops firing at that point, as it
is nc longer subject to artificial excitation,

At t = 13 seconds, thrusters () and (® are confirmed similarly, as is thruster Q) at
{ = 15 seconds. Observation of the thruster-firing histories and error plots shows what is
happening during this time: the suspected thrusters are excited artificially, one at a time,
resulting in a more-accurate identification. The regulation error is kept roughly constant
during this period - L.e. within the bounds acceptible by the artificial-excitation process.

When thruster @ is confirmed at t = 15 seconds, no thrusters remain on the “List of
Suspects.” The remaining as-yet-unsuspected thrusters, [1 3 7 8], are added to the Toreire

" vector. They donot fire immediately, as.the error is too high, but'ance it is within acceptable

range (after thruster @ is used to reduce the error), they fire.

Thruster ® fires at about t 2= 17 and = 19 second:. Since no other thrusters are fifing
at these times,.it does nct .take long to identify it as a suspect, which occurs at ¢ = 20
seconds. Thruster (D simulates a complete thruster failure, producing only about 1/40th
of the thrust from a nominal thraster, It stays on for several seconds, vet the error plots
are fairly straight lines during this period, indicating constant muomentum and very little
thrust, The “Madel-Building” process confirmes this at t =i 28 seconds, remaoving it from
the lict of suspects,

With an erapty list of suspects, thrusters Q) (D and @ arclabeled for artificial excitation.
Taruster @), the other 90° elbow (Lhe second stioagly-destabilizing “ailure) is fired for the
first time, causing a second luss of etability. Theuster 3 had not heen excited up until this

puint for two ceasans:

- —— . G+, i,
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1. The artificial excitation algorithm restricts thruster use to those thrusters that have

already been tagged as suspects, unless regulation errors exceed a certain limit.

2. The new characteristics for thruster @ match the nominal characteristics of @) except
that (@ is more efficient in producing torque. This makes @ more likely to fire than

@ for most (but not all) force-vector requests,

These two effects conspire to prevent the firing before the first short pulse occurs at
¢ = 26 seconds (when buth of the above conditions allow firing for the first tinte), and then
for a sustained firing at t = 28 seconds (when thruster @ is targeted for artificial excitation
to expedite the identification).

The instability is caught quickly, since the rest of the plant is well-characterized at this
point in the identification. When its new characteristics are confirmed at ¢ = 36 seconds,
this represcuts the identification of the sixth thruster failure and the final reset of the neural-
network (raining process (the final major change detected in thruster charactetistics).

Thrusters ) and (D, the only un-altered thrusters, are confirmed to have ncminal
characteristics at ¢ = 48 seconds. marking the end of the artificially-excited identification
phase. From this point on. model updates are small, and made only when they exceed a
certaitt thréshold, so as not to disrupt the neural-network-training proress. In this case, one
final minor adjustnent was ntade at ¢ =z 95 seconds.

With the completion of identification (all thrusters idéntified to a high level of confic
dence) at ¢ := 48 seconds, artificial excitation ends, and the sole objective of the controller
is to regulate to the desired position. Position errors in all degrees of freedom arce reduced
imtaediately. as séen in the top hulf of Figure 6.10 between t = 48 and ¢ = 55 seconds. Thire
is some overshoot in v, peakitig at t = GO seconds. This is due primarily to the deadband
associated with the on-off thrusters®, Following thie single major overshoot, the regulation
etror is reduced to he well-within the static deadband, and results in an occasioral single
thruster pulse, as shown in the thrustéc-fiting plot from { = 66 -= 80 seconds.

*Due to the control atructure, Phecoatiol gains, and thruster-mappiiig cost function sclected, a deadband
existe within which the thiusters will not fice, even with aii optimal thruster mapper. While the nize of this
deacdband is diflicalt < - charactzrizé dué to the thruster.couplitg oficcts. the maximum static deadband
{Assuming vero vcloci tier and ertor in one degriee of freedom enly) is approvimately 2.9 cm in teanstation
and 10.6° in yaw angle {with the noniiiial thrustet conhgnration].
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6.8 Summary of Experimental Results

The performance of the neural-network-based reconfigurable ¢ontrol system, displayed in
Figure .10, was excellent, providing stabilization of the robot within four seconds, despite
the presence of six major thruster failures,

The systen-level design of the control system, discussed in Chapter 3, résulted in the
selection of a lincar-systems approach for identification, but a neural-network approach for
the thruster mapping. The decision concerning identification was critical to achieving the
quick failuté detection and identification that resulted (initial recovery occurred after only
four seconds). The neural-network mapper provided flexibility in adapting to the changes
in thruster characteristics.

The new Fully-Connected Architecture, discussed in Chapter 4. allowed the neural net:
work to make immediate use of the model provided by the identification component. A
lincar approxifnate thruster mmapper was calculated immediately following the initial failure
detection at ¢ = 4 seconds. Implenentation of this linear solutior. with the FCA. provided
immediate stabilization. This was followed by optimization of the nenlinear portion of the
neural network, resulting in near-optimal performance within 2 minutes. This performance
was obtained despite the implementation on a serial microprocessor; nupleraentation on
parallel-processing hardware would provide dramatically -faster performance. .

The new learning algorithm described in Chapter 5 was used to allow gradient-hased
optimization, in spite of the presence of the non-differentiable thrusters. The use ¢f gradient
informatior tu direct the optimization resulted in a dramatic improvement in learfing rate
over what could have heen ohitained with a tiiethod that was not gradient-based.
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Chapter 7
Conclusions

T'his finul chapter consists of two sections. The first section sutiunarizes the firdings of this
rescarch. The second gives suggestions for future rescarch.

7.1 Summary

This thesis has describad four new developtents in teural-network control that grew out
of a research program using a laboratory-based experiaténtal prototype of a free-flying
space robot. The advances were motivated hy, and deweloped for, a complex reconfigurable
theuster control problem applicable to real spiacesraft. Focussing on a specific coniplex
control task was useful in identifying some of the real-world issues iu neural-network control,
The work has led to the conclusions that follow

7.1.1 System-Level Design Approach: The Superiority of Hybrid Control

One basic conclusion from this reseaich is that a combination of the nonlinear processing
capalilities of neural networks witlt existing conventional control théory can he very pow-
arful. A cateful systom-lovel wna'ysis and design that considars the costs and benefits of all
available todls from the fields of neutal networks and control is likely to be more succes=ful
than an approach that has already decided vp-front what tools will be used. An ohjective
evaluation of the costs and henefits of ciach available ajiproach, followed by an efficient in:
tegration of these appreaches, and development of extefisions to existing theory wheré they
are neaded, constitutes a powerful stearegy for solving comples nonlinear control prohlems
in the real warld,

Iy
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In this work, the costs and benefits of neural networl; approaches have been outlined,

and objectively campared with alternative conventional approaches. The overall success

of the. reconfigurable control system resulting from application of_thig stratégy provides
additional support.to this conclusiou. °

To summarize -the criteria for valuable applications of neural networks, it was shown
that applications should involve systems with inscrutable (if <he exact form can he derived,
that will prabably be mare effective than a neural approach) nonlinearities (if the system is
purely linear, linear methods tend to have better convergence and provability characteristics e
than do newral networks) that may require some forn of adaptation (neural networks excel
here. since they are already designed for iterative training). Additionally, neural aetworks
are well suited to applications that require the processing speed of a parallel computer,
since their architecture is inherently parallel. e

7.1.2 Quick Adaptation - FCA

A major issue in neura! network contiol, and particularly in reconfigurable or adaptive
coutrol, is the requirement for speed of adaptation. The control application addressed [ )
here highliglits this need, since the robot suffezs a destubilizing change in its actuators. The
instability required a recovery within sévonds, not minntés.or hours. And this was achieved,
A new fully-cennuctéd neural network architecture (FCA) was developed to address
this speed issue. It is a feedforward notwork that brings together for the first time many ()
useful architocture features developed by other researchers. It has connections beyond thuse
provided by a layered network, yet is traimable with backpropagation. Aided Ly 2 systematie
complexity control schenié. this network was shown to have certain advantagés over layered
networks, particularly for éontrol problems. P
The most significant advantage in this application is the ability to incof porate seamlessly
a linear solution before tiaining begins. In control, us with other fields, ineat approximizte
solutions are often dasily caleulated based.upon prior knowledge of the system properties.
Quickly calenlating the linear approximation, and ditectly inputting that solution into the ®
neural network facilitates rapid adaptation without the deed for tiine-consuining iteratiof.
This feature may be especizlly useful if it allows immediate stabilization. as it dods here,
Anothier feafure of the FCA that contiibutes to its rapid rute of adaptation is the growing
of the network, A.smaller (fewer hidden néurons) fretwork converges more fupidly, siace °

there.ire fewer . parameéters to adapt, fewer calenlations need to ke made, nud a smaller
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training set is required to prevent over-fitting. The network beging with a small nurber of
hidden neurous, and gradually adds more, as greater funétional capacity is called for.

7.1.3 Gradient-Based Optimization for DVFs - Noisy Sigmoids

A new fechnique was developed that extends gradient-bascd optimization (e.g. backprop:
agation learning) for the first time to systems involving discrete-valued functions (DVFs)
(which are not continuously differentiable). This approach was motivated by the need for
acapting to the changing properties of the on-off thrusters used to control the robot, The
solution to this difficult, but specific problem i§ to approximate the DVFs with nolsy sig-
moids. This simple solution has been demonstrated to extend to other applications involving
optimizaticn with DVFs. Ore important example is for neural networks built with hard-
lirniting noalinearities rather than sigmoid functions. These are attractive because they are
cheaper and casier to implement in hardware. Another example is design optimization for
systems with DVF's (e.g. a structural design optimization that chooses between 1/4 inch
and 3/8 inch wall thickness, 3, 4, 5. or 6 screws, and 2 or 3 beams). This has not, yet been
demonstrated, but i, is expected to work well.

The modification to backpropagation is very small, sitmply requiring continuous-approx-
imation of the DV Fs, and injection of noise oft the forward sweep; vet the improvement in
network performanc? is dramatic.

It works by solving the problem unaddrassed by earlier methods: roundoft error. For
gradient-based optimization to work, during trairing a gradient must exist and be non.
zero: §o the obvious first step is to approximate the DVF with a continuéus approximation
whichi is ¢ontinuously differentiable (e.g. signioid-based functions), ‘This method providas
some succass, but ervors result when extensive use of the transition régions occurs during
training. ard round off to the nearest diserete level is required at rur tinie,

Identifying this roundoff erfor as the problem was piabably as iuportant a step as
the salution. Identification was aided by thé ability to compare the results to a known
optimal solution, as is known for the thruster-mapping problem. Without haowing the
level of performance that was possible, the problem of roundoff éfrof might never have heen
idedtified.

Once the problem.svas identfied, several attempts were made to address it, The suc-
ceusful methud involves the simple modification of injectitig noise into the sigmoid duting

tradiiing. Noise éreates ratidom odtputs it the transition fegions ave nsed, bat has litthe effect
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if saturated regions close to the allowed discrate levels are used. Therefore, the transition

regions are avoided during training, and roundoff error is minimal at run tinie.

7.1.4 Experiniental Demonstration of Reconfigurable Control System °

The tazk of rapid reconfiguration in response to destabilizing thruster failures first motivated
these developments aud then drew upon them heavily in the experimental demonstration.

o The system-level control design approach resulted in & system related Lo a conventional
indirect adaptive control systern, and used a reural network as an officient, adaptive
methad to implewent the nonlinear thruster mapping compoient.

o The FCA resulted in near-immediate stabilization and rapid learning. due to the
féedthrough connections. and growing ol the network. Y

o The gradiont-based optimizaticn for discrete-valued functions resulted in a more ac-
curate mapping due to a good approximation to the an-off thrusters, while allowing
the rapid optimization made possible with use of gradient information.

When trained off-line and tested experimentally on the real robot, the neural-network
thruster mapper. provided near-optimal perfonnance duting multiple-degree.of-freedony tra-
jectorles. Arbitrary accuracy could be abtained depending upon the size of the network
used. With no thruster failures (so symmotries may be used) and & hidden neurons, a ®
thruster-mapping force arror of 4.5%" was achieved, This small érror is barely peiceptible
duc 1o the use of feeddack in the control system,

When reconfiguring the control systein ia response to previously-unknown, majar, desta-
bilizing thruster fallures, rapid stabilization and optimization were achieved,. as seen.in e
Figure 6.10. Détection of 1 destabilizing failure took from 2-5 scconds (the problem is
complivated due to noisy accelerometers, und to firing multiple thrusters shaultaneously).
After the initial detection, caleulation of a stablizing linear approximate solution, and im-
plenenitation via the FCA took less than one second. As thiusters are suspected to have
changad characteristics (e.g. tu be aagled at 43° or 90°, have degraded fhruit output, of
be plugged completely), they are artificially oxcited to speed up the iduntification.  Sta-
hility and closed-loop contral afe maiftained duting this time. With six out of the eight

1Due to the use of discréte-valuéd acinators, there is almost alwags a foreé error vector. The ceror value
tefiocted here iadicates that the average magnituds of the force error vectur s 1.035 times the magnhitude |
achiesalle with the optimal theuster mapper.
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thrusters failed (two. were strongly destabilizing), the identification converges within about
60 seconds. The neural network thruster mapper is trained concurrently with the identifi-
cation, and the modecl used for training is continuously updated. Near-optimal performance
is achieved by the end of the identification phase (e.g. 20% efror above optimal), and it
improves to arbitrary accuracy with further training and growing of the network.

7.2 Recommendations for Future Work

Performing this research generated a number of ideas for possible future rescarch. The
following is a list of possible future project ideas. As this rescarch has encompassed a broad
range of issues, from the details of an experimental impleraentation to the derivation of
a new optimization algorithm, the following suggustions have been grcuped into spécific

areas.

7.2.1 Integration of Neural-Network and Conventional Control

o One of the vonclusions of this research has been that the merging of neural network
technology with control systéms enginéering cau lead to the developiment of highly-
¢apable control systems. Much neural network theory and much con’rol theory already
éxist that could produce significant advaances in cont ol capability simply through
astute integration of them. With this in mind, some possible research areas that are
related to the robot application are suggested. Control systems for physical plants
that are.difficult to model, and have inscrutable nonlinearities are good targets. These
may inclnde high-angle-of-attack aerodynamics, or undérwater robot control.

¢ ‘This research has presented a reconfigurableé control systern implemented in real-time.
Reconfigirable control is an itportant area of research in the military aireraft indus-
try, ad it is desirable to have a coutrol systetn. that can recover from partial system
failuie - e.g. battle damage. where portion of a wing is shot off, or dorne contiol surfaces
hecoriw inoperable. Néural networks ate attractive for this application due to their
ability to deal with che nonlinear aerodynamics, adaptive capability, and real-tine
processing apecd if inplemented in hardware The reconfigitzation time requirmment

for an unistahle aireraft is likely to be mcasured in hundredths of a second. instead of

seconds, as for the space robot application. Hardwiare implewentation of the coneepts.

[ S — — —
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developed_ here, combined with further developments. tailored to the aircraft applica-
tion, could make this goal feasible. A memory-based approach may be required due
to the high speed requirement and limited data availability.

o Feedforward neural networks built with sigmoidal aitivation functions were used ex-
clugivety in this research, primarily bécause thew appear to hald much promise for
neural network control applications in general.. Other neural network architectures
exist. and may prove to offer advantages depending upon the application:

1. Radial Basis Funstion (RBF) networks may be viable, as described in Chapter 1.

2. Sigmoidal (and RBF) networks.work by atternpting to form i function that “fits”
the data. (1 aining cases) they are presented. The hope is that this function forms
a gereralization of the training data, and the network will perforin well or. new
data. However. ether reurally.-motivated approaches are memory-basel, rathet
than fur.ction-based. Rather than learn a gereralizing function of the data, these
methods remember the traintug inputs directly, and interpolate/extrapolate as
needed when new points are input. CMAC {2 (3] is one example of a memory-
besed neural networlk that has boen used successfully in control apolications {23].
Briefly, the tradeofl is that meniory-based approaches learn very quickly, since
they simply remember each training input; but the recell can bé mucli slower,
since the nearest neighbors must. be found and then interpolated to produce an
output. Function-based approaches train more slowly, as they must compress
the-data into the functional fornat created by the network topology, but have

very fast recall,

7.2.2 Optimal (Hybrid) Combination of Neural Networks with Conven-
tiorial Control: FCA

o The ability to incorpotate ptioi~knowledge has proven to be the most useful aspect
of the FCA for this application. It is currently linited to linear solutions. Extensions
to other tvpes of solutions, perhaps closely tailofed to conventional control inethods

may be useful.

o Euzzy logie has been an arca of recent interest in the coiitrol community recently. The

appeal of fuzzy logis is its ability to incorporate knowledge from i htnan expait into
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a logic system. A number of rules are programmed by the expert (e.g. “if you're close
ta vour destination, and the brakes aren’t tas hot, and you're going medium speed,
and there are no immediate.abstacles, then apply the.brakes gently”), and the fuzzy
logic is nsed to blend the effects of these rules together, in a2 more-graceful manner
than is possible with crisp logic. This ability to interface with human expertise has
proven to be useful for tasks for which-such human expertise.can be encoded into a
logic systeni. Research in incerporating this 1ype of knowledge may beé useful. Again,
an astute “hybrid” combination of fuzzy logic and conventional control may well be
superior to either alane.

The roajor drawbick is the possibility for everfitting, and a complexity control method
was applied 10 address this issue here. Several other neural network pruning methods
exist that may deserve investigation,

The general problem of deterraining the optimal topology of neural notworks (includ-
ing the number and connections of nonlinear clemnents) remains an ‘mportant research
issue. The technique presented here (usé of the FCA to allow the implementation of
any possible set of layers or connections, and the gradual addition of hidden neurons
until acceptable perforraance is reached) provides a workable solution, but thers is

rootit for other advances that may itnprove the efficiency of the topology selection.

7.2.3 Gradient-Based Optimization for DVFs

e A significant feature of the algorithrn presented here is that the specific rype of noise

uged (e.g. Gaussian, aniforin, otc.) is not important. Furthermore, for bi-level DVFs,
the algorithm is robust to wide variations.in the magnitude of the noise distribution.
Although tuning the noise level is it relatively simple operation, elimination of this.
requitement is a clear advantagé, Uufortunately, for DVFs with more than two lovels,
tuning of the noise level is required (although seiection is fairly robust and intuitive).
It has been suggoested that this tuning may be avoided if a different form of the
continuous ipproximation funiction is chosén [45].

The algurithm has been applied to two very different applications so far - optimization
of 4 neural petwork bailt with hard-limitess, and nptimization of a neural-network con-
troller for a syntemn witl vioff actuatois. Theé simplicity of the algorithm, combined .
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with the success on two unrelated problems, causes vptimism for the applicability of
the algorithm to other fields. One clear application is design optimization. as nien-
tioned In the research sumnmary above.

e The application to neural nctworks built with hard-limiters has provided an efficient
tzaining algorithm for a new class of neural network hardware. Study of the details of
such an implementation, or inodification of the algorithm to allow for on-chip learning
would be heneficial.

7.2.4 Thruster Mapping

These suggestions reflect further advancements toward a better thruster control system.
This project was chosen as a challenge problem to highlight some of the current issues in L
neural network control. However, if the goal were to make the best thruster control system

possible, these are some issues that have not been fully addressed in this rescarch.

¢ A more complex mathematical model of the robot could be used: ®

1. Include thruster transients: due to the response time of the solenuid valve, and
additionally, the finite size of the chumber between the valve and the nozzle, the
thrust output is time-dependent. These effects were ignored.

2. Include low-gas-reservoir effects: the amount of gas remaining in the high and
low pressure reservoirs affects the thrust output In these experiments, reservoir
levels were kept close ta nominal so these effécts were minimized (and ignored).

3. Account acenrately for unultiple thruster firings: duc to limited flow in the plumb- ®
ing,.the thrust from.each thruster is reduced when multiple-thrusters are fired
simultancously (on the order of 10% loss per extra thruster). A simple linear
approximation was used for these éxperiments.

o ldenvification of thruster characteristics is performed by analyzing the direct relation-
ship between thruster firings and the resulting acceleration. While this is a robust,
self-cuntained 1D scheme that siects the requitements of this application, incotpo.
ration of position information (available from a visien system of Global Positinning ®

Systom) with a Kalmau filter should itupirove the identification.

i & oo e v L e L 5 L 5 N . -
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e ‘The initial decision to separate the controller into control (PD controller that ignores
discrete-actuator effects) and thruster-mapping components, was made to simplify
the problem. It simplified the problem at the expense of ¢ptimality. A subsequent
step, made possible by the devclopments.in this work, is to merge the robot-base
controller and thruster mapper design into a single component. This should result in
improved total system perforinance, as the neural network provides a fast method for
ca'culating an approxiniation to the optimal control selution that can be calculated
in real time. One approach could be to use the network for trajectory optimization,
accounting for the on-off actuators.
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Appendix A
Thruster-Mapping Cost Function

This Appendix presants a variation on thé cost function used to define the optimal thruster
mapping. This function places weighted costs on the force-mapping error and the amount
of gas used.

The cost functions that wese used for thé néural-network developments in Chapters 4
and 5 and the experiments in Chapter 6 were both presented in Chapter 2. The complexity-
control term used to augruent those cost functions was presented in Chapter 4. This Ap-
pendix presents an alternative vost function that has merit, but was not used extensively
in this research.

In minimizing the force érror (and possibly also gas usage) only, the thruster mapper
does not consider the dynamics of the plant., It assumes that the Fy., vector output by
the controller feedback law is chosen carefully enough that it needs cnly concern itself with
producing the closest matching Foer. In fact, in this application, the controller coniponent
is a simple proportiomal-derivative controller (shown in Figyre 2.12) that does not. take into
account the thruster limitations.

The decision to separate control and wapping components was made largely for sim-
plicity in design. Ideally, the controller component would be aware of thruster titnitations -
for example, a bang-bang cortreller instead of a I'D conttoller. Implementing a bang-bang
controller if réal tifne would probably result in the same decwsion that was made for the
thruster wapper heré: use a neural nétwork to implement a nonlinear appraximation to
the cptithal controller - one that ran be computed in 1eal time. In this case, it may bo
beneficial to mwerge the neural-network conttol component with the neural-network mapping

component. The single netral network would Cien tiiap the siz-element state error vector.,
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Xeer 2 [Zersy Yerrs Verry Terrs Yerrs thers), directly to the binary cight-element vector of
thrusters to fice, T = [T} T2 T3 T T5 75 T3 Tg). This even-more-complex nonlinear control
problem is not addressed here, but a mueh-simpler first step is proposed.

A first step to address the presence of plant.dynamics in the thruster mapper is to use
an alternative error-weighting scheme. This plan does not address the on-off nature of the
thrusters directly, but doed.incorporate the effect of variations in the ruass properties of the
robot. For example, if the moment of inertia were relatively small compared to the mass, it
might be mare important to match the desired torque than the desired translational forces.

In this plan. iustead of minimizing normalized force error, the force error is considered
to be a disturbance, and the resulting normalized acceleration error vector is minimized.
Tha normalization factor chosen is the acceleration vector resulting at the perimeter of the
base. radius r, when a single thruster is fired. In this instance, the error becomes:

o (TN ( _&,..(1))2 Tyrers (T) :
K /= ( mass ) 1\ Tnass + (1a/7) +a"”§7' (A.1)
where,
J = thruster-mapping performance cost

binary thruster \'alue:s,[ 7, Ty T3 Ty Ts Te 1% 'l};}

"

thrustar number .

T o=
F.,.(T) = net force error in x-direction. (Jz,,, = /.o ), resulting from T
F,..(T) = nect force error in y-direction, { Fy,,, - Fy,,, ), resulting from T
Feor(T) = net torque ecro* about yraxis, (Ty,, = Tya., ) resulting from T
mass = robot total mass
I, = robot momear of inertia about y axis
¢ = robot baseé radius

Due tw tlié dimensions and mass preperties of the robot used in these experinients, this
ends up being close to the uriginal cost function, and the actual performance ifaprovement

in this case is minimal.

e



Appendix B

Accelerometer Specifications

Two Systron Donner 41310A Linear Servo Accolerometers were used on the robot, as de-
scribed in Sectiéns 2 and 6. This Appéndix contains specifications and dimensions for these

accelerometars (10
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Figure B30 8

Vigire B.1: Systron Donner 4310A Accclérometar -
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